Suppr超能文献

利用深度监督学习进行早期准确乳腺癌检测与分析,以改善诊断,提高患者治疗效果。

Early detection and analysis of accurate breast cancer for improved diagnosis using deep supervised learning for enhanced patient outcomes.

作者信息

Chetry Mandika, Feng Ruiling, Babar Samra, Sun Hao, Zafar Imran, Mohany Mohamed, Afridi Hassan Imran, Khan Najeeb Ullah, Ali Ijaz, Shafiq Muhammad, Khan Sabir

机构信息

Regenerative Medicine, International Association of Stem Cell & Regenerative Medicine, New Delhi, India.

Department of Radiation Oncology, Shunde Hospital of Southern Medical University, Foshan, China.

出版信息

PeerJ Comput Sci. 2025 Apr 24;11:e2784. doi: 10.7717/peerj-cs.2784. eCollection 2025.

Abstract

Early detection of breast cancer (BC) is essential for effective treatment and improved prognosis. This study compares the performance of various machine learning (ML) algorithms, including convolutional neural networks (CNNs), logistic regression (LR), support vector machines (SVMs), and Gaussian naive Bayes (GNB), on two key datasets, Wisconsin Diagnostic Breast Cancer (WDBC) and Breast Cancer Histopathological Image Classification (BreaKHis). For the BreaKHis dataset, the CNN achieved an impressive accuracy of 92%, with precision, recall, and F1 score values of 91%, 93%, and 91%, respectively. In contrast, LR achieved 88% accuracy, with corresponding precision, recall, and F1 score values of 86%, 87%, and 89%, respectively. SVM and GNB demonstrated 90% and 84% accuracy, respectively, with similar precision, recall, and F1-score metric performances. In the WDBC dataset, LR achieved the highest accuracy of 97.5%, with nearly 97% values for precision, recall, and F1 score. In contrast, CNN attained 96% accuracy with equal recall, precision, and F1 score values of 96%. SVM and GNB followed closely with 95% and 94% accuracy, respectively. Minimising the false negative rate (FNR) and false omission rate (FOR) is vital for improving model reliability, with the LR excelling in the WDBC dataset (FNR: 5.9%, FOR: 4.8%) and the CNN performing best in the BreaKHis dataset (FNR: 8.3%, FOR: 7.0%). The results demonstrate that CNN outperforms traditional models across both datasets, highlighting its potential for early and accurate BC detection.

摘要

早期发现乳腺癌对于有效治疗和改善预后至关重要。本研究比较了多种机器学习(ML)算法的性能,包括卷积神经网络(CNN)、逻辑回归(LR)、支持向量机(SVM)和高斯朴素贝叶斯(GNB),这些算法应用于两个关键数据集,即威斯康星诊断乳腺癌(WDBC)和乳腺癌组织病理学图像分类(BreaKHis)。对于BreaKHis数据集,CNN实现了令人印象深刻的92%的准确率,精确率、召回率和F1分数分别为91%、93%和91%。相比之下,LR的准确率为88%,相应的精确率、召回率和F1分数分别为86%、87%和89%。SVM和GNB的准确率分别为90%和84%,精确率、召回率和F1分数指标表现相似。在WDBC数据集上,LR达到了最高准确率97.5%,精确率、召回率和F1分数接近97%。相比之下,CNN的准确率为96%,召回率、精确率和F1分数均为96%。SVM和GNB紧随其后,准确率分别为95%和94%。将假阴性率(FNR)和假遗漏率(FOR)降至最低对于提高模型可靠性至关重要,LR在WDBC数据集上表现出色(FNR:5.9%,FOR:4.8%),而CNN在BreaKHis数据集上表现最佳(FNR:8.3%,FOR:7.0%)。结果表明,在两个数据集上CNN均优于传统模型,凸显了其在早期准确检测乳腺癌方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af66/12190644/7d860a7d654d/peerj-cs-11-2784-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验