Suppr超能文献

基于扩散加权图像的三维深度学习中风梗死分割的临床性能评估

Clinical performance review for 3-D Deep Learning segmentation of stroke infarct from diffusion-weighted images.

作者信息

Werdiger Freda, Yogendrakumar Vignan, Visser Milanka, Kolacz James, Lam Christina, Hill Mitchell, Chen Chushuang, Parsons Mark W, Bivard Andrew

机构信息

Department of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.

Melbourne Brain Centre, Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.

出版信息

Neuroimage Rep. 2024 Jan 29;4(1):100196. doi: 10.1016/j.ynirp.2024.100196. eCollection 2024 Mar.

Abstract

INTRODUCTION

During the subacute phase of ischemic stroke, MR diffusion-weighted imaging (DWI) is used to assess the extent of tissue injury. Segmentation of DWI infarct is challenging due to disease variability, but Deep Learning (DL) provides a solution, outperforming existing methods on small datasets. However, a lack of clinically meaningful performance evaluation hinders clinical translation. Here we develop a DL DWI segmentation tool and provide clinical performance review.

METHODS

Subjects in this retrospective study presented with stroke symptoms and later underwent DWI imaging. DL architectures U-Net and DenseNet were used to develop a DWI segmentation tool. The Dice Similarly Coefficient (DSC) was used to select the best- and worst-performing model. Clinical experts reviewed these models on the clinical test set, agreeing with the model if no 'significant' error was present. The average agreement with the model and interrater agreement was also derived.

RESULTS

In total, 573 participants with an ischemic stroke were included. The DenseNet delivered the best model (DSC = 0.831 ± 0.064) with a mean inference time of 0.07 s. Clinicians compared this with the worst model (U-Net, DSC = 0.759 ± 0.122), agreeing with the DenseNet predictions more than the U-Net (83.8 % vs. 79.3 %). Clinicians also agreed with each other more over performance interpretation when evaluating the DenseNet over the U-Net (87.9 % vs. 72.7 %).

CONCLUSION

Our DWI segmentation tool achieved high performance with clinical review providing meaningful performance evaluation. Model development will continue towards prospective deployment before which clinical review will be repeated. This work will benefit physicians in assessing patient prognosis.

摘要

引言

在缺血性中风的亚急性期,磁共振扩散加权成像(DWI)用于评估组织损伤的程度。由于疾病的变异性,DWI梗死灶的分割具有挑战性,但深度学习(DL)提供了一种解决方案,在小数据集上优于现有方法。然而,缺乏具有临床意义的性能评估阻碍了其临床应用。在此,我们开发了一种DL DWI分割工具并提供临床性能评估。

方法

本回顾性研究中的受试者出现中风症状,随后接受了DWI成像。使用DL架构U-Net和DenseNet开发了一种DWI分割工具。使用骰子相似系数(DSC)来选择表现最佳和最差的模型。临床专家在临床测试集上对这些模型进行评估,如果没有“重大”错误则认可该模型。还得出了与模型的平均一致性以及评分者间的一致性。

结果

总共纳入了573名缺血性中风患者。DenseNet提供了最佳模型(DSC = 0.831±0.064),平均推理时间为0.07秒。临床医生将此与最差模型(U-Net,DSC = 0.759±0.122)进行比较,与DenseNet预测的一致性高于U-Net(83.8%对79.3%)。在评估DenseNet时,临床医生在性能解读上彼此之间的一致性也高于U-Net(87.9%对72.7%)。

结论

我们的DWI分割工具通过临床评估实现了高性能,提供了有意义的性能评估。模型开发将继续朝着前瞻性部署推进,在此之前将重复进行临床评估。这项工作将有助于医生评估患者的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b650/12172793/81a6a5d74dc0/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验