Suppr超能文献

评估快感缺失中基于状态的网络动力学。

Evaluating state-based network dynamics in anhedonia.

作者信息

Pisoni Angela, Browndyke Jeffrey, Davis Simon W, Smoski Moria

机构信息

Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.

Durham Veterans Affairs Health Care System, Durham, NC, USA.

出版信息

Neuroimage Rep. 2024 Oct 19;4(4):100225. doi: 10.1016/j.ynirp.2024.100225. eCollection 2024 Dec.

Abstract

Anhedonia is a transdiagnostic clinical syndrome associated with significant clinical impairment. In spite of this, a clear network-level characterization of anhedonia does not yet exist. The present study addressed this gap in the literature by taking a graph theoretical approach to characterizing state-based (i.e., reward anticipation, rest) network dynamics in a transdiagnostic sample of adults with clinically significant anhedonia ( = 77). Analyses focused on three canonical brain networks: the Salience Network (SN), the Default Mode Network (DMN) and the Central Executive Network (CEN), with hypotheses focusing on the role of saliency-mapping in anhedonia. Contrary to hypotheses, no significant relation was found between the SN and anhedonia symptom severity. Exploratory results revealed a significant association between anhedonia severity and DMN reorganization from rest to reward anticipation. Specifically, greater anhedonia severity was associated with less reward-related reorganization. This finding suggests that anhedonia severity may be associated with DMN hyposensitivity, such that individuals with more severe anhedonia may have a difficult time disengaging from their internal world in the context of potentially rewarding experiences. Although preliminary, this finding challenges the centrality of the SN in anhedonia severity and suggests the importance of the DMN. Clinical implications and future directions are explored.

摘要

快感缺失是一种与严重临床损害相关的跨诊断临床综合征。尽管如此,目前尚不存在对快感缺失的清晰网络层面特征描述。本研究通过采用图论方法,对具有临床显著快感缺失的成年跨诊断样本(n = 77)中基于状态(即奖励预期、休息)的网络动力学进行特征描述,填补了文献中的这一空白。分析聚焦于三个典型脑网络:突显网络(SN)、默认模式网络(DMN)和中央执行网络(CEN),假设重点关注突显映射在快感缺失中的作用。与假设相反,未发现SN与快感缺失症状严重程度之间存在显著关联。探索性结果显示,快感缺失严重程度与从休息到奖励预期的DMN重组之间存在显著关联。具体而言,快感缺失严重程度越高,与奖励相关的重组越少。这一发现表明,快感缺失严重程度可能与DMN低敏性有关,即快感缺失更严重的个体在潜在奖励体验的背景下可能难以从其内心世界中脱离出来。尽管这一发现是初步的,但它挑战了SN在快感缺失严重程度中的核心地位,并表明了DMN的重要性。本文还探讨了临床意义和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4158/12172927/479a49ee130b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验