Suppr超能文献

一项大型脑电图研究在不同软件包上的成功复现。

Successful reproduction of a large EEG study across software packages.

作者信息

Kabbara Aya, Forde Nina, Maumet Camille, Hassan Mahmoud

机构信息

LASeR - Lebanese Association for Scientific Research, Tripoli, Lebanon.

MINDig, F-35000, Rennes, France.

出版信息

Neuroimage Rep. 2023 May 27;3(2):100169. doi: 10.1016/j.ynirp.2023.100169. eCollection 2023 Jun.

Abstract

As an active field of research and with the development of state-of-the-art algorithms to analyze EEG datasets, the parametrization of Electroencephalography (EEG) analysis workflows has become increasingly flexible and complex, with a great variety of methodological options and tools to be selected at each step. This high analytical flexibility can be problematic as it can yield to variability in research outcomes. Therefore, growing attention has been recently paid to understand the potential impact of different methodological decisions on the reproducibility of results. In this paper, we aim to examine how sensitive the results of EEG analyses are to variations in preprocessing with different software tools. We reanalyzed the shared EEG data (N = 500) from (Williams et al., 2021) using three of the most commonly used open-source Matlab-based EEG software tools: EEGLAB, Brainstorm and FieldTrip. After reproducing the same original preprocessing workflow in each software, the resulting event-related potentials (ERPs) were qualitatively and quantitatively compared in order to examine the degree of consistency/discrepancy between software packages. Our findings show a good degree of convergence in terms of the general profile of ERP waveforms, peak latencies and effect size estimates related to specific signal features. However, considerable variability was also observed in the magnitude of the absolute voltage observed with each software package as reflected by the similarity values and observed statistical differences at particular channels and time instants. In conclusion, we believe that this study provides valuable clues to better understand the impact of the software tool on the analysis of EEG results.

摘要

作为一个活跃的研究领域,随着用于分析脑电图(EEG)数据集的先进算法的发展,脑电图分析工作流程的参数化变得越来越灵活和复杂,在每个步骤都有各种各样的方法选项和工具可供选择。这种高度的分析灵活性可能会带来问题,因为它可能导致研究结果的变异性。因此,最近人们越来越关注理解不同方法决策对结果可重复性的潜在影响。在本文中,我们旨在研究脑电图分析结果对使用不同软件工具进行预处理变化的敏感程度。我们使用三种最常用的基于Matlab的开源脑电图软件工具:EEGLAB、Brainstorm和FieldTrip,重新分析了(Williams等人,2021年)共享的脑电图数据(N = 500)。在每个软件中重现相同的原始预处理工作流程后,对所得的事件相关电位(ERP)进行了定性和定量比较,以检查软件包之间的一致程度/差异程度。我们的研究结果表明,在ERP波形的总体特征、峰值潜伏期以及与特定信号特征相关的效应大小估计方面,具有良好的收敛程度。然而,每个软件包观察到的绝对电压幅度也存在相当大的变异性,这体现在相似性值以及特定通道和时间点观察到的统计差异上。总之,我们认为这项研究为更好地理解软件工具对脑电图结果分析的影响提供了有价值的线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b13/12172740/a80cbc522244/gr1.jpg

相似文献

1
Successful reproduction of a large EEG study across software packages.
Neuroimage Rep. 2023 May 27;3(2):100169. doi: 10.1016/j.ynirp.2023.100169. eCollection 2023 Jun.
4
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
5
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
7
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.

本文引用的文献

1
Moving beyond processing- and analysis-related variation in resting-state functional brain imaging.
Nat Hum Behav. 2024 Oct;8(10):2003-2017. doi: 10.1038/s41562-024-01942-4. Epub 2024 Aug 5.
2
Garden of forking paths in ERP research - Effects of varying pre-processing and analysis steps in an N400 experiment.
Psychophysiology. 2024 Oct;61(10):e14628. doi: 10.1111/psyp.14628. Epub 2024 Jul 3.
4
How to do Better N400 Studies: Reproducibility, Consistency and Adherence to Research Standards in the Existing Literature.
Neuropsychol Rev. 2022 Sep;32(3):577-600. doi: 10.1007/s11065-021-09513-4. Epub 2021 Aug 9.
6
Mean-Field Modeling of Brain-Scale Dynamics for the Evaluation of EEG Source-Space Networks.
Brain Topogr. 2022 Jan;35(1):54-65. doi: 10.1007/s10548-021-00859-9. Epub 2021 Jul 9.
7
#EEGManyLabs: Investigating the replicability of influential EEG experiments.
Cortex. 2021 Nov;144:213-229. doi: 10.1016/j.cortex.2021.03.013. Epub 2021 Apr 2.
8
Standardized measurement error: A universal metric of data quality for averaged event-related potentials.
Psychophysiology. 2021 Jun;58(6):e13793. doi: 10.1111/psyp.13793. Epub 2021 Mar 29.
9
The ERP, frequency, and time-frequency correlates of feedback processing: Insights from a large sample study.
Psychophysiology. 2021 Feb;58(2):e13722. doi: 10.1111/psyp.13722. Epub 2020 Nov 10.
10
Variability in the analysis of a single neuroimaging dataset by many teams.
Nature. 2020 Jun;582(7810):84-88. doi: 10.1038/s41586-020-2314-9. Epub 2020 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验