Suppr超能文献

应用生成式人工智能加强早产儿视网膜病变的患者教育。

Implementing Generative AI to Enhance Patient Education on Retinopathy of Prematurity.

作者信息

Dihan Qais A, Brown Andrew D, Zaldivar Ana T, Montgomery Kendall E, Chauhan Muhammad Z, Abdelnaem Seif E, Ali Arsalan A, Jabbehdari Sayena, Azzam Amr, Sallam Ahmed B, Elhusseiny Abdelrahman M

出版信息

J Pediatr Ophthalmol Strabismus. 2025 Jun 27:1-10. doi: 10.3928/01913913-20250515-01.

Abstract

PURPOSE

To evaluate the efficacy of large language models (LLMs) in generating patient education materials (PEMs) on retinopathy of prematurity (ROP).

METHODS

ChatGPT-3.5 (OpenAI), ChatGPT-4 (OpenAI), and Gemini (Google AI) were compared on three separate prompts. Prompt A requested that each LLM generate a novel PEM on ROP. Prompt B requested generated PEMs at the 6th-grade reading level using the validated Simple Measure of Gobbledygook (SMOG) readability formula. Prompt C requested LLMs improve the readability of existing, human-written PEMs to a 6th-grade reading level. PEMs inserted into Prompt C were sourced through a Google search of "retinopathy of prematurity." Each PEM was analyzed for readability (SMOG, Flesch-Kincaid Grade Level [FKGL]), quality (Patient Education Materials Assessment Tool [PEMAT], DISCERN), and accuracy (Likert Misinformation Scale).

RESULTS

LLM-generated PEMs were of high quality (median DISCERN = 4), understandable (PEMAT-U ≥ 70%), and accurate (Likert = 1). Prompt B generated more readable PEMs than Prompt A ( < .001). ChatGPT-4 and Gemini rewrote PEMs (Prompt C) from a baseline readability level (FKGL: 8.8 ± 1.9, SMOG: 8.6 ± 1.5) to the targeted 6th-grade reading level. Only ChatGPT-4 rewrites maintained high quality and reliability (median DISCERN = 4).

CONCLUSIONS

LLMs, particularly ChatGPT-4, can serve as strong supplementary tools to automate the process of generating readable and high-quality PEMs for parents on ROP. .

摘要

目的

评估大语言模型(LLMs)在生成早产儿视网膜病变(ROP)患者教育材料(PEMs)方面的效果。

方法

在三个不同的提示下对ChatGPT-3.5(OpenAI)、ChatGPT-4(OpenAI)和Gemini(谷歌人工智能)进行比较。提示A要求每个大语言模型生成一篇关于ROP的全新PEM。提示B要求使用经过验证的“晦涩语言简易度量法”(SMOG)可读性公式生成六年级阅读水平的PEM。提示C要求大语言模型将现有的人工撰写的PEM的可读性提高到六年级阅读水平。插入提示C的PEM是通过在谷歌上搜索“早产儿视网膜病变”获得的。对每篇PEM进行可读性(SMOG、弗莱施-金凯德年级水平[FKGL])、质量(患者教育材料评估工具[PEMAT]、DISCERN)和准确性(李克特错误信息量表)分析。

结果

大语言模型生成的PEM质量高(DISCERN中位数=4)、易于理解(PEMAT-U≥70%)且准确(李克特=1)。提示B生成的PEM比提示A更具可读性(P<0.001)。ChatGPT-4和Gemini将PEM(提示C)从基线可读性水平(FKGL:8.8±1.9,SMOG:8.6±1.5)改写为目标六年级阅读水平。只有ChatGPT-4的改写保持了高质量和可靠性(DISCERN中位数=4)。

结论

大语言模型,尤其是ChatGPT-4,可以作为强大的辅助工具,自动为家长生成关于ROP的可读性强且高质量的PEM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验