Suppr超能文献

Cochrane系统评价中早期研究对后期研究的预测性能。

Prediction Performance of Earlier Studies for Later Studies in Cochrane Reviews.

作者信息

Al Amer Fahad M, Lin Lifeng

机构信息

Department of Mathematics, College of Science and Arts, Najran University, Najran, Saudi Arabia.

Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA.

出版信息

J Eval Clin Pract. 2025 Jun;31(4):e70172. doi: 10.1111/jep.70172.

Abstract

RATIONALE

Between-study heterogeneity poses challenges to the generalisability of meta-analytical results, which can influence their ability to predict outcomes in future studies. Prediction intervals have been proposed to account for both uncertainty and heterogeneity, yet their real-world performance in predicting future studies has not been systematically evaluated.

AIMS AND OBJECTIVES

This study aims to assess the prediction performance of meta-analyses, focusing on how effectively they predict later study results based on meta-analyses of earlier studies.

METHODS

This empirical study used a comprehensive collection of meta-analyses from the Cochrane Database of Systematic Reviews. Through in-sample evaluation, the success of predicting later study results was assessed based on meta-analyses of earlier studies in Cochrane reviews. The impact of factors such as the number of studies in the meta-analysis and uncertainties in heterogeneity estimation was also analysed.

RESULTS

The findings reveal that prediction failures are common, particularly as the number of studies in the meta-analysis increases. This may be attributed to uncertainties in estimating between-study heterogeneity. Conversely, when the number of studies is small, the proportion of successful predictions is high. However, this is likely due to large uncertainties in predictions and the limited information provided by fewer studies, which may reduce their utility in providing valuable evidence for future studies.

CONCLUSIONS

These results underscore the importance of cautious interpretation and further investigation when applying meta-analytical findings to future studies. Our findings suggest several potential strategies for predicting future study results through evidence synthesis, with particular emphasis on carefully considering between-study heterogeneity, the number of studies included in a meta-analysis, and the temporal trends in individual study results.

摘要

理论依据

研究间的异质性给荟萃分析结果的普遍性带来了挑战,这可能会影响其预测未来研究结果的能力。有人提出预测区间来解释不确定性和异质性,但它们在预测未来研究中的实际表现尚未得到系统评估。

目的

本研究旨在评估荟萃分析的预测性能,重点关注基于早期研究的荟萃分析对后期研究结果的预测效果。

方法

这项实证研究使用了来自Cochrane系统评价数据库的大量荟萃分析。通过样本内评估,根据Cochrane综述中早期研究的荟萃分析来评估预测后期研究结果的成功率。还分析了荟萃分析中研究数量和异质性估计不确定性等因素的影响。

结果

研究结果表明,预测失败很常见,尤其是随着荟萃分析中研究数量的增加。这可能归因于研究间异质性估计的不确定性。相反,当研究数量较少时,成功预测的比例较高。然而,这可能是由于预测中的不确定性较大以及较少研究提供的信息有限,这可能会降低它们为未来研究提供有价值证据的效用。

结论

这些结果强调了在将荟萃分析结果应用于未来研究时谨慎解释和进一步调查的重要性。我们的研究结果提出了几种通过证据综合预测未来研究结果的潜在策略,特别强调仔细考虑研究间的异质性、荟萃分析中纳入的研究数量以及个别研究结果的时间趋势。

相似文献

1
Prediction Performance of Earlier Studies for Later Studies in Cochrane Reviews.
J Eval Clin Pract. 2025 Jun;31(4):e70172. doi: 10.1111/jep.70172.
2
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
3
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
5
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
7
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.

本文引用的文献

1
Trial sequential analysis involving same-year studies requires careful temporal ordering.
J Clin Epidemiol. 2025 Mar;179:111645. doi: 10.1016/j.jclinepi.2024.111645. Epub 2024 Dec 18.
2
The winner's curse: why large effect sizes in discovery trials always get smaller and often disappear completely.
Anaesthesia. 2024 Jan;79(1):86-90. doi: 10.1111/anae.16161. Epub 2023 Oct 27.
3
Conceptualizing the reporting of living systematic reviews.
J Clin Epidemiol. 2023 Apr;156:113-118. doi: 10.1016/j.jclinepi.2023.01.008. Epub 2023 Feb 1.
4
Prediction intervals reporting in orthodontic meta-analyses.
Eur J Orthod. 2021 Oct 4;43(5):596-600. doi: 10.1093/ejo/cjab037.
5
Empirical assessment of prediction intervals in Cochrane meta-analyses.
Eur J Clin Invest. 2021 Jul;51(7):e13524. doi: 10.1111/eci.13524. Epub 2021 Feb 27.
6
Frequentist performances of Bayesian prediction intervals for random-effects meta-analysis.
Biom J. 2021 Feb;63(2):394-405. doi: 10.1002/bimj.201900351. Epub 2020 Nov 9.
7
Arcsine-based transformations for meta-analysis of proportions: Pros, cons, and alternatives.
Health Sci Rep. 2020 Jul 27;3(3):e178. doi: 10.1002/hsr2.178. eCollection 2020 Sep.
8
Prediction interval in random-effects meta-analysis.
Am J Orthod Dentofacial Orthop. 2020 Apr;157(4):586-588. doi: 10.1016/j.ajodo.2019.12.011.
9
The magnitude of small-study effects in the : an empirical study of nearly 30 000 meta-analyses.
BMJ Evid Based Med. 2020 Feb;25(1):27-32. doi: 10.1136/bmjebm-2019-111191. Epub 2019 Jul 4.
10
Comparison of four heterogeneity measures for meta-analysis.
J Eval Clin Pract. 2020 Feb;26(1):376-384. doi: 10.1111/jep.13159. Epub 2019 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验