Meng Lingyin, Cao Danfeng, Pedersen Jonas Oshaug, Greczynski Grzegorz, Rogoz Vladyslav, Limbut Warakorn, Eriksson Mats
Division of Sensor and Actuator Systems, Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden.
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden.
ACS Appl Mater Interfaces. 2025 Jul 9;17(27):39719-39731. doi: 10.1021/acsami.5c09316. Epub 2025 Jun 26.
The widespread use of nonrenewable materials in point-of-care (PoC) electroanalysis, such as test strips with electronic meters, has inadvertently contributed to electronic waste. Paper, traditionally used as a passive substrate, offers a renewable alternative as a sustainable and versatile electroanalytical platform for on-site analysis. Here, we present the fabrication and integration of laser-induced electronic components and Parafilm-based microfluidics on a single sheet of paper as a versatile electroanalytical platform for both aqueous and organic systems. Using a flame retardant and laser treatment, we enable a direct conversion of passive cellulose paper into laser-induced graphite (PLIG), allowing for the fabrication of conductive pathways and various electronic components with customized geometries on a single sheet of paper, a process termed laser-induced papertronics. Microfluidic channels were then successfully patterned by hot-pressing hydrophobic Parafilm into hydrophilic cellulose paper (paper-para) at a low temperature (60 °C) for just 15 s, achieving a submillimeter resolution of ∼0.45 mm. The resulting paper-para demonstrated compatibility with a wide range of aqueous solutions and organic solvents. This process facilitates the seamless integration of laser-induced papertronics with Parafilm-based microfluidics on a single monolithic paper sheet, denoted microfluidic PLIG (μPLIG), preserving both the structural integrity and electrochemical performance of the papertronics as well as the fluidic character of the Parafilm-based paper microfluidics. Demonstrative applications include pH sensing with a sensitivity of -40.3 mV pH, lactate biosensing with a sensitivity of 0.92 μA mM, and Vitamin D3 detection in ethanol mixtures exhibiting a linear range of 5-65 μM, indicating the platform's compatibility and versatility for sensor applications in both aqueous and organic systems. This study establishes a foundation for a uniquely integrated, cost-effective, and environmentally friendly electroanalytical platform, μPLIG, uniting paper-based LIG electronics and Parafilm-based microfluidics on a single disposable substrate.
即时检测(PoC)电分析中不可再生材料的广泛使用,如带有电子仪表的测试条,无意中造成了电子垃圾。传统上用作被动基底的纸张,作为一种可持续且通用的现场分析电分析平台,提供了一种可再生的替代方案。在此,我们展示了在单张纸上制造和集成激光诱导电子元件以及基于石蜡膜的微流体,作为用于水性和有机系统的通用电分析平台。通过阻燃和激光处理,我们能够将被动的纤维素纸直接转化为激光诱导石墨(PLIG),从而在单张纸上制造具有定制几何形状的导电通路和各种电子元件,这一过程称为激光诱导纸电子学。然后通过在60°C的低温下将疏水性石蜡膜热压到亲水性纤维素纸上15秒,成功地对微流体通道进行了图案化,实现了约0.45毫米的亚毫米分辨率。所得的纸 - 石蜡膜显示出与多种水溶液和有机溶剂的兼容性。这一过程促进了激光诱导纸电子学与基于石蜡膜的微流体在单片纸上的无缝集成,即微流体PLIG(μPLIG),既保留了纸电子学的结构完整性和电化学性能,又保留了基于石蜡膜的纸微流体的流体特性。示范性应用包括灵敏度为 -40.3 mV/pH的pH传感、灵敏度为0.92 μA/mM的乳酸生物传感以及在乙醇混合物中检测维生素D3,线性范围为5 - 65 μM,表明该平台在水性和有机系统中用于传感器应用的兼容性和通用性。本研究为一个独特集成、具有成本效益且环保的电分析平台μPLIG奠定了基础,该平台将基于纸的LIG电子学和基于石蜡膜的微流体整合在单个一次性基底上。