Suppr超能文献

社区卫生工作者识别乌干达北部需要入住健康中心的儿童:使用生命体征和先进即时检验进行院前风险预测

Community health workers identify children requiring health center admission in Northern Uganda: prehospital risk prediction using vital signs and advanced point-of-care tests.

作者信息

Ebbs Daniel, Denish Olanya, Bongomin Felix, Chandna Arjun, Haseefa Fathima, Canarie Michael, Cappello Michael

机构信息

Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.

Northern Uganda Medical Mission, Pader, Uganda.

出版信息

Glob Health Action. 2025 Dec;18(1):2519704. doi: 10.1080/16549716.2025.2519704. Epub 2025 Jun 26.

Abstract

BACKGROUND

Over five million children die annually from preventable and treatable illnesses. Most of these deaths occur in sub-Saharan Africa, predominantly in socioeconomically deprived regions. With nearly half of pediatric mortality occurring at the community level, serious illnesses must be detected early in the prehospital setting. The purpose of this 18-month, prospective, observational pilot study was to introduce the first use of the proinflammatory biomarker, CRP, in the prehospital setting to community health workers and to develop a prehospital predictive model to identify sick children requiring health center admission.

METHODS

We recruited 636 children presenting to one of four community health worker teams who completed a prehospital evaluation and referred each child to the closest health center. The primary outcome for this study was admission at the health center for more than 24 h. We used logistic regression to quantify the area under the receiver operating characteristic curve (AUC).

RESULTS

We found poor discrimination of danger signs and CRP, with AUCs of 0.55 (95% CI 0.52-0.57) and 0.52 (95% CI 0.47-0.57), respectively. A model comprising vital signs demonstrated superior discrimination, with an AUC of 0.66 (95% CI 0.62-0.71), which improved with the addition of danger signs (AUC 0.69; 95% CI 0.64-0.73), and when restricted to children who tested negative for malaria ( = 327; AUC 0.71; 95% CI 0.65-0.77).

CONCLUSIONS

We demonstrate that performing advanced point-of-care tests is feasible in resource-limited community settings and present one of the first prehospital prediction models developed with community health workers.

摘要

背景

每年有超过500万儿童死于可预防和可治疗的疾病。这些死亡大多发生在撒哈拉以南非洲,主要是在社会经济贫困地区。由于近一半的儿童死亡发生在社区层面,因此必须在院前环境中尽早发现严重疾病。这项为期18个月的前瞻性观察性试点研究的目的是首次在院前环境中向社区卫生工作者引入促炎生物标志物CRP,并开发一种院前预测模型,以识别需要入住健康中心的患病儿童。

方法

我们招募了636名到四个社区卫生工作者团队之一就诊的儿童,这些团队完成了院前评估,并将每个儿童转诊到最近的健康中心。本研究的主要结局是在健康中心住院超过24小时。我们使用逻辑回归来量化受试者工作特征曲线(AUC)下的面积。

结果

我们发现危险体征和CRP的鉴别能力较差,AUC分别为0.55(95%CI0.52-0.57)和0.52(95%CI0.47-0.57)。一个包含生命体征的模型显示出更好的鉴别能力,AUC为0.66(95%CI0.62-0.71),加入危险体征后有所改善(AUC0.69;95%CI0.64-0.73),并且当仅限于疟疾检测呈阴性的儿童时(n=327;AUC0.71;95%CI0.65-0.77)。

结论

我们证明了在资源有限的社区环境中进行先进的即时检验是可行的,并展示了首个与社区卫生工作者共同开发的院前预测模型之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab6/12203686/e3acca58043c/ZGHA_A_2519704_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验