Teng Yuying, Chen Hao, Yan Xuehua, Yan Yingnan, Sun Sifan, Pan Jianmei, Wu Jili, Moradian Jamile Mohammadi
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Institute for Advanced Materials, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Inorg Chem. 2025 Jul 14;64(27):13873-13886. doi: 10.1021/acs.inorgchem.5c01755. Epub 2025 Jun 26.
This research presents a method to construct multilevel micronano structures by exploiting the highly tunable composition and morphology of NiFe-layered double hydroxides (NiFe-LDHs) and metal-organic frameworks (MOFs) and introducing sulfide ions (S) to improve composite conductivity. It effectively mitigates issues of poor cycle stability caused by the inherent volume expansion of transition metal sulfides (TMSs) and the agglomeration of electrode materials under high mass loading conditions, which significantly improves the electrochemical performance. Notably, at the current density of 1 mA cm, the C-CoS/NiFe-S@NF electrode demonstrates an exceptionally high capacitance at approximately 17,338.6 mF cm. As an asymmetric supercapacitor (ASC) electrode, C-CoS/NiFe-S@NF demonstrates energy and power densities of 1.05 mWh cm and 51.75 mW cm, respectively. Moreover, the ASC device exhibits remarkable stability under cycling, with an 82.6% retention of its capacity and consistent Coulombic efficiency of 93.8% after 5000 cycles at a current density of 30 mA cm. This study demonstrates that the multilevel micronano structured self-supporting electrode not only enhances the charge storage capacity but also strengthens the overall electrochemical stability of the electrode considerably. The findings offer a promising pathway for developing energy storage devices with superior performance, leveraging the synergistic effects of the integrated MOFs/NiFe-LDHs composite structures.
本研究提出了一种通过利用镍铁层状双氢氧化物(NiFe-LDHs)和金属有机框架(MOFs)高度可调的组成和形态,并引入硫离子(S)来提高复合导电性,从而构建多级微米纳米结构的方法。它有效地缓解了由过渡金属硫化物(TMSs)固有的体积膨胀以及在高质量负载条件下电极材料的团聚所导致的循环稳定性差的问题,显著提高了电化学性能。值得注意的是,在1 mA cm的电流密度下,C-CoS/NiFe-S@NF电极表现出约17338.6 mF cm的极高电容。作为不对称超级电容器(ASC)电极,C-CoS/NiFe-S@NF的能量密度和功率密度分别为1.05 mWh cm和51.75 mW cm。此外,该ASC器件在循环过程中表现出显著的稳定性,在30 mA cm的电流密度下经过5000次循环后,其容量保留率为82.6%,库仑效率稳定在93.8%。这项研究表明,多级微米纳米结构的自支撑电极不仅提高了电荷存储容量,还大大增强了电极的整体电化学稳定性。这些发现为利用集成的MOFs/NiFe-LDHs复合结构的协同效应开发具有卓越性能的储能器件提供了一条有前景的途径。