Suppr超能文献

通过对德国大学医院电子健康记录数据进行分布式分析来检测和预测药物不良事件所面临的挑战。

Challenges in detecting and predicting adverse drug events via distributed analysis of electronic health record data from German university hospitals.

作者信息

Wermund Anna Maria, Thalheim Torsten, Medek André, Schmidt Florian, Peschel Thomas, Strübing Alexander, Neumann Daniel, Scherag André, Loeffler Markus, Kesselmeier Miriam, Jaehde Ulrich

机构信息

Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany.

Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany.

出版信息

PLOS Digit Health. 2025 Jun 26;4(6):e0000892. doi: 10.1371/journal.pdig.0000892. eCollection 2025 Jun.

Abstract

The Medical Informatics Initiative Germany (MII) aims to facilitate the interoperability and exchange of electronic health record data from all German university hospitals. The MII use case "POLyphamacy, drug interActions and Risks" (POLAR_MI) was designed to retrospectively detect medication-related risks in adult inpatients. As part of POLAR_MI, we aimed to build predictive models for specific adverse events. Here, using the two adverse events gastrointestinal bleeding and drug-related hypoglycaemia as examples, we present our initial investigation to determine whether these adverse events and their associations with potential risk factors can be detected. We applied a two-step distributed analysis approach to electronic health record data from 2018 to 2021. This approach consisted of a local statistical data analysis at ten participating centres, followed by a mixed-effects meta-analysis. For each adverse event, two multivariable logistic regression models were constructed: (1) including only demographics, diagnoses and medications, and (2) extended by laboratory values. As numerically stable estimations of both models were not possible at each centre, we constructed different centre subgroups for meta-analyses. We received prevalence estimates of around 1.2% for GI bleeding and around 3.0% for drug-related hypoglycaemia. Although unavailability of laboratory values was a common reason hindering model estimation, multivariable regression models were obtained for both adverse events from several centres. Regarding our original intention to build predictive models, the median area under the receiver operating characteristic curve was above 0.70 for all multivariable regression models, indicating feasibility. In conclusion, plausible estimates for prevalence and regression modelling odds ratios were received when using a distributed analysis approach on inpatient treatment data from diverse German university hospitals. Our results suggest that the development of predictive models in a distributed setting is possible if the research question is adapted to the infrastructure and the available data.

摘要

德国医学信息学倡议组织(MII)旨在促进德国所有大学医院电子健康记录数据的互操作性和交换。MII的用例“多重用药、药物相互作用和风险”(POLAR_MI)旨在回顾性检测成年住院患者中与用药相关的风险。作为POLAR_MI的一部分,我们旨在建立特定不良事件的预测模型。在此,以胃肠道出血和药物相关低血糖这两种不良事件为例,我们展示了初步调查,以确定这些不良事件及其与潜在风险因素的关联是否能够被检测到。我们对2018年至2021年的电子健康记录数据应用了两步分布式分析方法。该方法包括在十个参与中心进行局部统计数据分析,随后进行混合效应荟萃分析。对于每种不良事件,构建了两个多变量逻辑回归模型:(1)仅包括人口统计学、诊断和用药情况,(2)扩展到实验室检查值。由于每个中心都无法对两个模型进行数值稳定的估计,我们构建了不同的中心亚组进行荟萃分析。我们得到的胃肠道出血患病率估计约为1.2%,药物相关低血糖患病率估计约为3.0%。虽然实验室检查值不可用是阻碍模型估计的常见原因,但从几个中心都获得了针对这两种不良事件的多变量回归模型。关于我们建立预测模型的初衷,所有多变量回归模型的受试者操作特征曲线下面积中位数均高于0.70,表明具有可行性。总之,对来自不同德国大学医院的住院治疗数据采用分布式分析方法时,得到了关于患病率和回归建模比值比的合理估计。我们的结果表明,如果研究问题能适应基础设施和可用数据,在分布式环境中开发预测模型是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f43/12200832/25a823a2a093/pdig.0000892.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验