Sun Zhixin, Cui Han, Mei Xiangxiang, Yuan Hailei
College of Safety Engineering and Emergency Management, Nantong Institute of Technology, Nantong, Jiangsu, China.
College of Computer and Information Engineering, Nantong Institute of Technology, Nantong, Jiangsu, China.
PLoS One. 2025 Jun 26;20(6):e0326576. doi: 10.1371/journal.pone.0326576. eCollection 2025.
Energy consumption prediction in buildings is crucial for optimizing energy management. The latest research faces three critical challenges: (1) Insufficient temporal correlation extraction and prediction accuracy, hindering widespread adoption and application; (2) The positive impact of timestamp embedding in time series prediction under multi-mode decomposition; and (3) The issue of adaptive coupling with multi-source data. To overcome these issues, the study proposes Twin Time-Series Networks (T2SNET), which incorporates a time-embedding layer and a Temporal Convolutional Network (TCN) to extract patterns from Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), along with an adaptive fusion gate to combine energy consumption and meteorological data. The model was evaluated on datasets from university dormitories, office buildings, and school classrooms, showing significant improvements over the optimal baseline method. For instance, on the university classroom dataset, T2SNET reduced MAE by 4.56%, RMSE by 9.45%, and MAPE by 3.16% compared to the CEEMDAN-RF-LSTM model. These results highlight T2SNET's effectiveness in predicting building energy consumption, providing a robust solution for energy management systems. The proposed method, along with baseline model code and data, has been updated and is available at https://github.com/HaileiYuan/T2SNET-Pro.git.
建筑能耗预测对于优化能源管理至关重要。最新研究面临三个关键挑战:(1)时间相关性提取不足和预测准确性问题,阻碍了其广泛采用和应用;(2)多模式分解下时间戳嵌入在时间序列预测中的积极影响;以及(3)与多源数据的自适应耦合问题。为克服这些问题,该研究提出了双时间序列网络(T2SNET),它包含一个时间嵌入层和一个时间卷积网络(TCN),用于从带自适应噪声的完备总体经验模态分解(CEEMDAN)中提取模式,同时还有一个自适应融合门来组合能耗和气象数据。该模型在大学宿舍、办公楼和学校教室的数据集上进行了评估,结果显示与最优基线方法相比有显著改进。例如,在大学教室数据集上,与CEEMDAN-RF-LSTM模型相比,T2SNET将平均绝对误差(MAE)降低了4.56%,均方根误差(RMSE)降低了9.45%,平均绝对百分比误差(MAPE)降低了3.16%。这些结果突出了T2SNET在预测建筑能耗方面的有效性,为能源管理系统提供了一个强大的解决方案。所提出的方法以及基线模型代码和数据已更新,可在https://github.com/HaileiYuan/T2SNET-Pro.git获取。