文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

同时接种B418和T11W可减少番茄植株的虫害。

Co-Inoculating B418 and T11W Reduced Infestation of Tomato Plants.

作者信息

Jiang Yanqing, Li Wenzhe, Li Jishun, Hu Jindong, Wei Yanli, Wang Yilian, Yang Hetong, Zhou Yi, Wu Yuanzheng, Zhang Shanshan

机构信息

Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.

School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

出版信息

Microorganisms. 2025 Jun 9;13(6):1337. doi: 10.3390/microorganisms13061337.


DOI:10.3390/microorganisms13061337
PMID:40572225
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12195390/
Abstract

Root-knot nematodes (RKNs; ) pose a significant threat to tomato crops, necessitating sustainable control methods. This study investigated the inoculation efficacy of co-cultured B418 and T11W compared with single-strain treatments for RKNs suppression and their influence on the structure and function of the rhizosphere microbiome. Co-inoculation with B418 + T11W achieved a 71.42% reduction in the disease index, significantly outperforming single inoculations of B418 (54.46%) and T11W (58.93%). Co-inoculation also increased plant height by 38.51% and fresh weight by 76.02% compared to the RKNs infested plants control, promoting robust tomato growth. Metagenomic analysis reveals that co-inoculation enhanced bacterial diversity, with 378 unique bacterial species and a high Shannon index, while fungal diversity decreased with dominance (83.31% abundance). Actinomycetota (46.42%) and Ascomycota (97.92%) were enriched in the co-inoculated rhizosphere, showing negative correlations with RKNs severity. Functional analysis indicates enriched metabolic pathways, including streptomycin and unsaturated fatty acid biosynthesis, enhancing microbial antagonism. Single inoculations altered pathways like steroid degradation (B418) and terpenoid biosynthesis (T11W), but co-inoculation uniquely optimized the rhizosphere microenvironment. These findings highlight co-inoculation with B418 + T11W effectively suppressing RKNs and fostering plant health by reshaping microbial communities and functions, offering a promising approach for sustainable agriculture.

摘要

根结线虫对番茄作物构成重大威胁,因此需要可持续的防治方法。本研究调查了共培养的B418和T11W与单菌株处理相比对根结线虫抑制的接种效果及其对根际微生物群落结构和功能的影响。B418 + T11W共接种使病情指数降低了71.42%,显著优于B418(54.46%)和T11W(58.93%)的单接种。与根结线虫侵染的植物对照相比,共接种还使株高增加了38.51%,鲜重增加了76.02%,促进了番茄的健壮生长。宏基因组分析表明,共接种增强了细菌多样性,有378种独特细菌物种且香农指数较高,而真菌多样性随着优势度(丰度83.31%)降低。放线菌门(46.42%)和子囊菌门(97.92%)在共接种的根际中富集,与根结线虫严重程度呈负相关。功能分析表明代谢途径丰富,包括链霉素和不饱和脂肪酸生物合成,增强了微生物拮抗作用。单接种改变了类固醇降解(B418)和萜类生物合成(T11W)等途径,但共接种独特地优化了根际微环境。这些发现突出了B418 + T11W共接种通过重塑微生物群落和功能有效抑制根结线虫并促进植物健康,为可持续农业提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/671eda9985ff/microorganisms-13-01337-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/f22b96155474/microorganisms-13-01337-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/e60f9199c93c/microorganisms-13-01337-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/a931c3e9ad7b/microorganisms-13-01337-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/4ac755fa711b/microorganisms-13-01337-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/e3c06fc66660/microorganisms-13-01337-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/44776b67a72d/microorganisms-13-01337-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/671eda9985ff/microorganisms-13-01337-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/f22b96155474/microorganisms-13-01337-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/e60f9199c93c/microorganisms-13-01337-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/a931c3e9ad7b/microorganisms-13-01337-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/4ac755fa711b/microorganisms-13-01337-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/e3c06fc66660/microorganisms-13-01337-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/44776b67a72d/microorganisms-13-01337-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/12195390/671eda9985ff/microorganisms-13-01337-g007.jpg

相似文献

[1]
Co-Inoculating B418 and T11W Reduced Infestation of Tomato Plants.

Microorganisms. 2025-6-9

[2]
Efficacy of 2-undecanol produced by KM2501-1 in controlling .

Microbiol Spectr. 2025-6-26

[3]
First Report of Root-Knot Nematode on in the Republic of Korea.

Plant Dis. 2025-6-27

[4]
Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community.

Sci Rep. 2022-5-19

[5]
Impact of Trichoderma, abscisic acid and polyamines on resistance tomato cultivars against M. incognita infection.

Mol Biol Rep. 2025-6-23

[6]
Arbuscular mycorrhizal fungi and Trichoderma longibrachiatum alter the transcriptome of Vicia villosa in response to infection by the fungal pathogen Stemphylium vesicarium.

BMC Microbiol. 2025-2-25

[7]
ELONGATED HYPOCOTYL5 Regulates Resistance to Root-Knot Nematode by Modulating Antioxidant System and Jasmonic Acid in .

Antioxidants (Basel). 2025-6-3

[8]
Diversity and composition of soil microbial communities in the rhizospheres of late blight-resistant tomatoes after inoculation.

Front Plant Sci. 2025-3-7

[9]
Phylogenetic analysis of plant-pathogenic and non-pathogenic isolates on maize from plants, soil, and commercial bio-products.

Appl Environ Microbiol. 2025-3-19

[10]
Structure and function of rhizosphere soil microbial communities associated with root rot of .

Front Microbiol. 2024-7-18

本文引用的文献

[1]
Bracken: estimating species abundance in metagenomics data.

PeerJ Comput Sci. 2017

[2]
is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .

Appl Environ Microbiol. 2025-2-19

[3]
Integration of soil microbiology and metabolomics to elucidate the mechanism of the accelerated infestation of tobacco by the root-knot nematode.

Front Microbiol. 2024-8-23

[4]
Revealing the hidden world of soil microbes: Metagenomic insights into plant, bacteria, and fungi interactions for sustainable agriculture and ecosystem restoration.

Microbiol Res. 2024-8

[5]
Pantoea jilinensis D25 enhances tomato salt tolerance via altering antioxidant responses and soil microbial community structure.

Environ Res. 2024-2-15

[6]
Metagenomic Approach Deciphers the Role of Community Composition of Mycobiome Structured by VB7 and TK in Tomato Rhizosphere to Suppress Root-Knot Nematode Infecting Tomato.

Microorganisms. 2023-9-30

[7]
Integrated metagenomics and metabolomics analysis reveals changes in the microbiome and metabolites in the rhizosphere soil of .

Front Plant Sci. 2023-8-4

[8]
Assessment of nematicidal and plant growth-promoting effects of sp. JB-2 in root-knot nematode-infested soil.

Front Plant Sci. 2023-7-19

[9]
Effects of a compound agent on growth, nutrients, enzyme activity, and microbial community of rhizosphere soil.

PeerJ. 2023

[10]
Plant domestication shapes rhizosphere microbiome assembly and metabolic functions.

Microbiome. 2023-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索