Ermeidis Savvas, Tassis Dimitrios, Papageorgiou George P, Stavrinides Stavros G, Makarona Eleni
Department of Condensed Matter and Materials Physics, School of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, 153 41 Athens, Greece.
Micromachines (Basel). 2025 May 26;16(6):627. doi: 10.3390/mi16060627.
Meeting the rising need for secure authentication in IoT and Industry 4.0, this work presents chemically synthesized ZnO nanostructured homojunctions as powerful and scalable physical unclonable functions (PUFs). By leveraging intrinsic variability from Li doping and the stochastic hydrothermal growth process, we systematically identified electrical parameters offering outstanding variability, stability, and reproducibility. ZnO devices outperform commercial diodes by delivering richer parameter diversity, lower costs, and superior environmental sustainability. Pushing beyond traditional approaches, we introduce multi-level quantization for boosted accuracy and entropy, demonstrate the normal distribution of challenge candidate parameters to support a novel method under development, and extract multiple parameters (8-10) per device instead of relying on a single-bit output. Parameter optimization and selection are performed upfront through a rigorous assessment of variability and inter-correlation, maximizing uniqueness and reliability. Thanks to their strong scalability and eco-friendliness, ZnO-based homojunctions emerge as a dynamic, future-proof platform for building low-cost, high-security, and sustainable digital identity systems.
为满足物联网和工业4.0中对安全认证日益增长的需求,这项工作展示了化学合成的ZnO纳米结构同质结作为强大且可扩展的物理不可克隆功能(PUF)。通过利用锂掺杂的固有变异性和随机水热生长过程,我们系统地确定了具有出色变异性、稳定性和可重复性的电学参数。ZnO器件通过提供更丰富的参数多样性、更低的成本和卓越的环境可持续性,优于商用二极管。超越传统方法,我们引入多级量化以提高准确性和熵,证明挑战候选参数的正态分布以支持正在开发的新方法,并且每个器件提取多个参数(8 - 10个)而不是依赖单比特输出。通过对变异性和相互相关性的严格评估预先进行参数优化和选择,最大限度地提高唯一性和可靠性。由于其强大的可扩展性和生态友好性,基于ZnO的同质结成为构建低成本、高安全性和可持续数字身份系统的动态、面向未来的平台。