Deng Chenchen, Wang Yilong, Li Guangpu, Zheng Jiyuan, Liu Yu, Wang Chao, Wang Yuyan, Guo Yuchen, Fan Jingtao, Du Qingyang, Yu Shaoliang
Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
Department of Automation, Tsinghua University, Beijing 100084, China.
Micromachines (Basel). 2025 Jun 4;16(6):681. doi: 10.3390/mi16060681.
Light has been intensively investigated as a computing medium due to its high-speed propagation and large operation bandwidth. Since the invention of the first laser in 1960, the development of optical computing technologies has presented both challenges and opportunities. Recent advances in artificial intelligence over the past decade have opened up new horizons for optical computing applications. This study presents an end-to-end truth table direct mapping approach using on-chip deep diffractive neural network (DNN) technology to achieve highly parallel optical logic operations. To enable precise logical operations, we propose an on-chip nonlinear solution leveraging the similarity between the hyperbolic tangent (tanh) function and reverse saturable absorption characteristics of quantum dots. We design and demonstrate a 4-bit on-chip DNN full adder circuit. The simulation results show that the proposed architecture achieves 100% accuracy for 4-bit full adders across the entire dataset.
由于光的高速传播和大运算带宽,光作为一种计算介质受到了广泛研究。自1960年第一台激光器发明以来,光计算技术的发展既带来了挑战,也带来了机遇。过去十年人工智能的最新进展为光计算应用开辟了新的视野。本研究提出了一种使用片上深度衍射神经网络(DNN)技术的端到端真值表直接映射方法,以实现高度并行的光逻辑运算。为了实现精确的逻辑运算,我们提出了一种片上非线性解决方案,利用双曲正切(tanh)函数与量子点的反向饱和吸收特性之间的相似性。我们设计并演示了一个4位片上DNN全加器电路。仿真结果表明,所提出的架构在整个数据集中对4位全加器的准确率达到了100%。