Axelsson Kristjan, Sheikhsarraf Mohammadhossien, Kutter Christoph, Richter Martin
Fraunhofer EMFT, Hansastr. 27d, 80686 Munich, Germany.
Sensors (Basel). 2025 Jun 17;25(12):3784. doi: 10.3390/s25123784.
Gas bubbles are one of the main disturbances encountered when dispensing drugs of microliter volumes using portable miniaturized systems based on piezoelectric diaphragm micropumps. The presence of a gas bubble in the pump chamber leads to the inaccurate administration of the required dose due to its impact on the flowrate. This is particularly important for highly concentrated drugs such as insulin. Different types of sensors are used to detect gas bubbles: inline on the fluidic channels or inside the pump chamber itself. These solutions increase the complexity, size, and cost of the microdosing system. To address these problems, a radically new approach is taken by utilizing the sensing capability of the piezoelectric diaphragm during micropump actuation. This work demonstrates the workflow to build a self-sensing micropump based on artificial intelligence methods on an embedded system. This is completed by the implementation of an electronic circuit that amplifies and samples the loading current of the piezoelectric ceramic with a microcontroller STM32G491RE. Training datasets of 11 micropumps are generated at an automated testbench for gas bubble injections. The training and hyper-parameter optimization of artificial intelligence algorithms from the TensorFlow and scikit-learn libraries are conducted using a grid search approach. The classification accuracy is determined by a cross-training routine, and model deployment on STM32G491RE is conducted utilizing the STM32Cube.AI framework. The finally deployed model on the embedded system has a memory footprint of 15.23 kB, a runtime of 182 µs, and detects gas bubbles with an accuracy of 99.41%.
当使用基于压电隔膜微泵的便携式小型系统分配微升体积的药物时,气泡是遇到的主要干扰之一。泵腔内存在气泡会因其对流速的影响而导致所需剂量的给药不准确。这对于胰岛素等高浓度药物尤为重要。使用不同类型的传感器来检测气泡:在流体通道上或泵腔内部。这些解决方案增加了微剂量系统的复杂性、尺寸和成本。为了解决这些问题,通过在微泵驱动过程中利用压电隔膜的传感能力采用了一种全新的方法。这项工作展示了在嵌入式系统上基于人工智能方法构建自感应微泵的工作流程。这通过实现一个电子电路来完成,该电路用微控制器STM32G491RE对压电陶瓷的负载电流进行放大和采样。在一个用于气泡注入的自动化测试台上生成了11个微泵的训练数据集。使用网格搜索方法对来自TensorFlow和scikit-learn库的人工智能算法进行训练和超参数优化。通过交叉训练例程确定分类准确率,并利用STM32Cube.AI框架在STM32G491RE上进行模型部署。最终在嵌入式系统上部署的模型内存占用为15.23 kB,运行时间为182微秒,检测气泡的准确率为99.41%。