Suppr超能文献

基于ReaxFF-MD的含环己烷半芳香族聚酰胺热解过程模拟

Simulation of the Pyrolysis Process of Cyclohexane-Containing Semi-Aromatic Polyamide Based on ReaxFF-MD.

作者信息

Zhang Xiaotong, Zheng Yuanbo, Zhang Qian, Wu Kai, Yu Qinwei, Yang Jianming

机构信息

Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.

State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an 710065, China.

出版信息

Polymers (Basel). 2025 Jun 6;17(12):1593. doi: 10.3390/polym17121593.

Abstract

Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs Reactive Force Field Molecular Dynamics (ReaxFF-MD) simulations to establish a pyrolysis model for poly(terephthaloyl-hexahydro-m-xylylenediamine) (PHXDT), systematically probing its pyrolysis kinetics and evolutionary pathways under elevated temperatures. The simulation results reveal an activation energy of 107.55 kJ/mol and a pre-exponential factor of 9.64 × 10 s for the pyrolysis process. The primary decomposition pathway involves three distinct stages. The first is initial backbone scission generating macromolecular fragments, followed by secondary fragmentation that preferentially occurs at short-chain hydrocarbon formation sites alongside radical recombination. Ultimately, the process progresses to deep dehydrogenation, carbonization, and heteroatom elimination through sequential reaction steps. Mechanistic analysis identifies multi-pathway pyrolysis involving carboxyl/amide bond cleavage and radical-mediated transformations (N-C-O, C-C-O, OH· and H·), yielding primary products including H, CO, HO, CHN, CH, and CH. Crucially, the cyclohexane structure demonstrates preferential participation in dehydrogenation and hydrogen transfer reactions due to its conformational dynamic instability and low bond dissociation energy, significantly accelerating the rapid generation of small molecules like H.

摘要

含环己烷的半芳香族聚酰胺(c-SaPA)具有优异的综合性能。现有研究主要集中在合成与改性方面,而对热解机理的基础研究仍然有限,这限制了用于汽车和能源系统等高性能应用的先进材料的发展。本研究采用反应力场分子动力学(ReaxFF-MD)模拟为聚(对苯二甲酰-六氢间苯二甲二胺)(PHXDT)建立热解模型,系统地探究其在高温下的热解动力学和演化途径。模拟结果表明热解过程的活化能为107.55 kJ/mol,指前因子为9.64×10 s。主要分解途径包括三个不同阶段。首先是主链初始断裂生成大分子片段,随后是二次断裂,其优先发生在短链烃形成位点并伴有自由基重组。最终,该过程通过连续反应步骤发展为深度脱氢、碳化和杂原子消除。机理分析确定了涉及羧基/酰胺键断裂和自由基介导的转化(N-C-O、C-C-O、OH·和H·)的多途径热解,产生的主要产物包括H、CO、HO、CHN、CH和CH。至关重要的是,环己烷结构由于其构象动态不稳定性和低键解离能,表现出优先参与脱氢和氢转移反应,显著加速了H等小分子的快速生成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8d/12197044/6924ca3978fd/polymers-17-01593-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验