Rachtanapun Pornchai, Suhr Jonghwan, Oh Eunyoung, Thajai Nanthicha, Kanthiya Thidarat, Kiattipornpithak Krittameth, Kaewapai Kannikar, Photphroet Siriphan, Worajittiphon Patnarin, Tanadchangsaeng Nuttapol, Wattanachai Pitiwat, Jantanasakulwong Kittisak, Sawangrat Choncharoen
Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Gyeonggi-do, Republic of Korea.
Polymers (Basel). 2025 Jun 17;17(12):1675. doi: 10.3390/polym17121675.
Antistatic and anti-flame biodegradable polymer composites were developed by melt-blending polybutylene succinate (PBS) with epoxy resin, polybutylene adipate-co-terephthalate (PBAT), and MgO particles. The composite films were prepared using a two-roll mill and an extrusion-blown film machine. Plasma and sparking techniques were used to improve the antistatic properties of the composites. The PBS/E1/PBAT/MgO 15% composite exhibited an improvement in V-1 rating of flame retardancy, indicating an enhancement in the flame retardancy of biodegradable composite films. The tensile strength of the PBS/PBAT blend increased from 19 MPa to 25 MPa with the addition of 1% epoxy due to the epoxy reaction increasing compatibility between PBS and PBAT. The PBS/E1/PBAT and PBS/E1/PBAT blends with MgO 0, 0.5, and 1% showed increases in the contact angle to 80.9°, 83.0°, and 85.7°, respectively, because the epoxy improved the reaction between PBS and PBAT via the MgO catalyst effect. Fourier-transform infrared spectroscopy confirmed the reaction between the epoxy groups of the epoxy resin and the carboxyl end groups of PBS and PBAT by new peaks at 1246 and 1249 cm. Plasma technology (sputtering) presents better antistatic properties than the sparking process because of the high consistency of the metal nanoparticles on the surface. This composite can be applied for electronic devices as sustainable packaging.
通过将聚丁二酸丁二醇酯(PBS)与环氧树脂、聚己二酸/对苯二甲酸丁二醇酯(PBAT)和氧化镁颗粒熔融共混,制备了抗静电和抗火焰的可生物降解聚合物复合材料。使用双辊研磨机和挤出吹膜机制备复合薄膜。采用等离子体和火花技术改善复合材料的抗静电性能。PBS/E1/PBAT/MgO 15%复合材料的阻燃等级提高到V-1级,表明可生物降解复合薄膜的阻燃性增强。由于环氧反应增加了PBS和PBAT之间的相容性,添加1%的环氧树脂后,PBS/PBAT共混物的拉伸强度从19 MPa提高到25 MPa。PBS/E1/PBAT和含有0%、0.5%和1%MgO的PBS/E1/PBAT共混物的接触角分别增加到80.9°、83.0°和85.7°,这是因为环氧树脂通过氧化镁的催化作用改善了PBS和PBAT之间的反应。傅里叶变换红外光谱通过1246和1249 cm处的新峰证实了环氧树脂的环氧基团与PBS和PBAT的羧基端基之间的反应。由于表面金属纳米颗粒的高度一致性,等离子体技术(溅射)比火花工艺具有更好的抗静电性能。这种复合材料可作为可持续包装应用于电子设备。