Suppr超能文献

通过具有可解释注意力单元的深度学习模型发现核定位信号全域。

Discovering the nuclear localization signal universe through a deep learning model with interpretable attention units.

作者信息

Li Yi-Fan, Pan Xiaoyong, Shen Hong-Bin

机构信息

Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.

出版信息

Patterns (N Y). 2025 May 6;6(6):101262. doi: 10.1016/j.patter.2025.101262. eCollection 2025 Jun 13.

Abstract

We describe NLSExplorer, an interpretable approach for nuclear localization signal (NLS) prediction. By utilizing the extracted information on nuclear-specific sites from the protein language model to assist in NLS detection, NLSExplorer achieves superior performance with greater than 10% improvement in the F1 score compared with existing methods on benchmark datasets and highlights other nuclear transport segments. We applied NLSExplorer to the nucleus-localized proteins in the Swiss-Prot database to extract valuable segments. A comprehensive analysis of these segments revealed a potential NLS landscape and uncovered features of nuclear transport segments across 416 species. This study introduces a powerful tool for exploring the NLS universe and provides a versatile network that can efficiently detect characteristic domains and motifs.

摘要

我们描述了NLSExplorer,一种用于预测核定位信号(NLS)的可解释方法。通过利用从蛋白质语言模型中提取的关于核特异性位点的信息来辅助NLS检测,与基准数据集上的现有方法相比,NLSExplorer实现了卓越的性能,F1分数提高了10%以上,并突出了其他核运输片段。我们将NLSExplorer应用于Swiss-Prot数据库中的细胞核定位蛋白,以提取有价值的片段。对这些片段的综合分析揭示了潜在的NLS格局,并揭示了416个物种的核运输片段的特征。这项研究引入了一个用于探索NLS世界的强大工具,并提供了一个能够有效检测特征结构域和基序的通用网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/340e/12191761/2f9ad99230ae/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验