Li Yi-Fan, Pan Xiaoyong, Shen Hong-Bin
Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
Patterns (N Y). 2025 May 6;6(6):101262. doi: 10.1016/j.patter.2025.101262. eCollection 2025 Jun 13.
We describe NLSExplorer, an interpretable approach for nuclear localization signal (NLS) prediction. By utilizing the extracted information on nuclear-specific sites from the protein language model to assist in NLS detection, NLSExplorer achieves superior performance with greater than 10% improvement in the F1 score compared with existing methods on benchmark datasets and highlights other nuclear transport segments. We applied NLSExplorer to the nucleus-localized proteins in the Swiss-Prot database to extract valuable segments. A comprehensive analysis of these segments revealed a potential NLS landscape and uncovered features of nuclear transport segments across 416 species. This study introduces a powerful tool for exploring the NLS universe and provides a versatile network that can efficiently detect characteristic domains and motifs.
我们描述了NLSExplorer,一种用于预测核定位信号(NLS)的可解释方法。通过利用从蛋白质语言模型中提取的关于核特异性位点的信息来辅助NLS检测,与基准数据集上的现有方法相比,NLSExplorer实现了卓越的性能,F1分数提高了10%以上,并突出了其他核运输片段。我们将NLSExplorer应用于Swiss-Prot数据库中的细胞核定位蛋白,以提取有价值的片段。对这些片段的综合分析揭示了潜在的NLS格局,并揭示了416个物种的核运输片段的特征。这项研究引入了一个用于探索NLS世界的强大工具,并提供了一个能够有效检测特征结构域和基序的通用网络。