Suppr超能文献

通过人工智能面部分析早期诊断血管性埃勒斯-当洛综合征:蒙塔尔奇诺主动脉联盟的结果。

Early diagnosis of vascular Ehlers-Danlos syndrome through AI-powered facial analysis: Results from the Montalcino Aortic Consortium.

作者信息

Murdock David R, Suresh Adarsh, Calderon Martinez Ernesto, Marin Isabella, Marin Frances, Braverman Alan C, Yetman Angela T, Morris Shaine A, Milewicz Dianna M

机构信息

Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX.

Cardiovascular Division, Department of Medicine, Washington University in St Louis, St Louis, MI.

出版信息

Genet Med Open. 2025 May 9;3:103434. doi: 10.1016/j.gimo.2025.103434. eCollection 2025.

Abstract

PURPOSE

Vascular Ehlers-Danlos syndrome (vEDS), which is caused by pathogenic variants, is a rare heritable aortic and arterial disorder associated with early mortality, mainly due to spontaneous vascular dissections and ruptures. Improved methods for diagnosing vEDS are needed for guideline-based management to be initiated for preventing deadly complications and differentiating vEDS from overlapping conditions, such as hypermobile EDS (hEDS).

METHODS

We implemented an artificial intelligence (AI) facial analysis model based on the PhenoScore framework using a support vector machine trained on facial images of 30 individuals, aged 6 to 65 years, with vEDS from the Montalcino Aortic Consortium, control images from the Chicago Face Database, and publicly available images of individuals with hEDS. Cross-validation was used to train the support vector machine, and statistical measures to evaluate the model performance were calculated. Local Interpretable Model-agnostic Explanations was used to generate facial heatmaps highlighting the features driving the model's predictions.

RESULTS

The AI classifier showed excellent performance with as few as 13 vEDS training images and distinguished vEDS from both controls and individuals with hEDS with high accuracy, achieving an area under the receiver operating characteristic curve ≥ 0.97. Local Interpretable Model-agnostic Explanations highlighted facial regions already established to characterize the facial features of vEDS patients (eg, prominent eyes).

CONCLUSION

Our results demonstrate the potential of AI-based facial analysis for diagnosing vEDS. This method democratizes the early diagnosis of vEDS by reducing dependence on genetic testing, enabling optimal management and improved outcomes, particularly in resource-limited areas.

摘要

目的

血管型埃勒斯-当洛综合征(vEDS)由致病变异引起,是一种罕见的遗传性主动脉和动脉疾病,与早期死亡相关,主要原因是自发性血管夹层和破裂。为了启动基于指南的管理以预防致命并发症并将vEDS与重叠病症(如活动过度型埃勒斯-当洛综合征(hEDS))区分开来,需要改进vEDS的诊断方法。

方法

我们基于PhenoScore框架实施了一种人工智能(AI)面部分析模型,使用支持向量机,该支持向量机在来自蒙塔尔奇诺主动脉联盟的30名年龄在6至65岁之间的vEDS患者的面部图像、来自芝加哥面部数据库的对照图像以及公开可用的hEDS患者图像上进行训练。采用交叉验证来训练支持向量机,并计算评估模型性能的统计量。使用局部可解释模型无关解释来生成面部热图,突出显示驱动模型预测的特征。

结果

AI分类器在仅13张vEDS训练图像时就表现出优异性能,能够高精度地区分vEDS与对照以及hEDS患者,受试者操作特征曲线下面积≥0.97。局部可解释模型无关解释突出了已确定用于表征vEDS患者面部特征的面部区域(例如,突出的眼睛)。

结论

我们的结果证明了基于AI的面部分析在诊断vEDS方面的潜力。这种方法通过减少对基因检测的依赖,使vEDS的早期诊断更加普及,有助于实现最佳管理并改善结果,特别是在资源有限的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93ab/12197971/7706f18cc615/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验