Kirchhoff Aron, Hustinx Alexander, Javanmardi Behnam, Hsieh Tzung-Chien, Brand Fabian, Hellmann Fabio, Mertes Silvan, André Elisabeth, Moosa Shahida, Schultz Thomas, Solomon Benjamin D, Krawitz Peter
Institute for Genomic Statistics and Bioinformatics, Bonn, NRW, Germany.
Institute of Computer Science, Augsburg, Bavaria, Germany.
Eur J Hum Genet. 2025 Mar;33(3):377-382. doi: 10.1038/s41431-025-01787-z. Epub 2025 Jan 15.
The facial gestalt (overall facial morphology) is a characteristic clinical feature in many genetic disorders that is often essential for suspecting and establishing a specific diagnosis. Therefore, publishing images of individuals affected by pathogenic variants in disease-associated genes has been an important part of scientific communication. Furthermore, medical imaging data is also crucial for teaching and training deep-learning models such as GestaltMatcher. However, medical data is often sparsely available, and sharing patient images involves risks related to privacy and re-identification. Therefore, we explored whether generative neural networks can be used to synthesize accurate portraits for rare disorders. We modified a StyleGAN architecture and trained it to produce artificial condition-specific portraits for multiple disorders. In addition, we present a technique that generates a sharp and detailed average patient portrait for a given disorder. We trained our GestaltGAN on the 20 most frequent disorders from the GestaltMatcher database. We used REAL-ESRGAN to increase the resolution of portraits from the training data with low-quality and colorized black-and-white images. To augment the model's understanding of human facial features, an unaffected class was introduced to the training data. We tested the validity of our generated portraits with 63 human experts. Our findings demonstrate the model's proficiency in generating photorealistic portraits that capture the characteristic features of a disorder while preserving patient privacy. Overall, the output from our approach holds promise for various applications, including visualizations for publications and educational materials and augmenting training data for deep learning.
面部完形(整体面部形态)是许多遗传疾病的一个特征性临床特征,对于怀疑和确立特定诊断往往至关重要。因此,发布受疾病相关基因致病变异影响的个体图像一直是科学交流的重要组成部分。此外,医学影像数据对于诸如完形匹配器(GestaltMatcher)等深度学习模型的教学和训练也至关重要。然而,医学数据往往难以获取,且分享患者图像涉及隐私和重新识别相关风险。因此,我们探讨了生成神经网络是否可用于合成罕见疾病的精确画像。我们修改了一种风格生成对抗网络(StyleGAN)架构,并对其进行训练,以生成针对多种疾病的特定病情人工画像。此外,我们还提出了一种技术,可为给定疾病生成清晰且详细的平均患者画像。我们在完形匹配器数据库中最常见的20种疾病上训练了我们的完形生成对抗网络(GestaltGAN)。我们使用真实增强超分辨率生成对抗网络(REAL - ESRGAN)来提高训练数据中低质量和彩色化黑白图像的画像分辨率。为增强模型对人类面部特征的理解,我们在训练数据中引入了未受影响类别。我们用63位人类专家测试了我们生成画像的有效性。我们的研究结果表明,该模型能够熟练生成逼真的画像,既能捕捉疾病的特征,又能保护患者隐私。总体而言,我们方法的输出在各种应用中具有前景,包括用于出版物和教育材料的可视化,以及扩充深度学习的训练数据。