Suppr超能文献

成都某医院甲型和乙型流感的流行病学趋势及全国监测数据(2019 - 2024年)

Epidemiological trends of influenza A and B in one hospital in Chengdu and national surveillance data (2019-2024).

作者信息

Li Xiang, Yang Chenlijie, Chen Lu, Ma Jian, Hu Zhongliang

机构信息

Department of Laboratory Medicine, Sichuan Jinxin Xinan Women and Children Hospital, Chengdu, China.

College of Resources and Environment, Aba Teachers College, Wenchuan, China.

出版信息

Front Cell Infect Microbiol. 2025 Jun 12;15:1603369. doi: 10.3389/fcimb.2025.1603369. eCollection 2025.

Abstract

BACKGROUND

Influenza A (Flu A) and Influenza B (Flu B) are major contributors to seasonal epidemics, causing significant morbidity and mortality worldwide. Understanding their epidemiological trends is essential for optimizing prevention and control strategies.

OBJECTIVE

This study aims to analyze the epidemiological trends of Flu A and Flu B, compare hospital-based and national surveillance data, and evaluate the impact of COVID-19 on influenza transmission to provide scientific evidence for influenza control measures.

METHODS

We analyzed influenza positivity rates from Sichuan Jinxin Xinan Women and Children Hospital data (HD) and Chinese National Influenza Center (CNIC) between 2019 and 2024. Temporal trends, subtype distributions, and the effects of non-pharmaceutical interventions (NPIs) were assessed.

RESULTS

Influenza activity exhibited significant temporal variations. In HD, the highest cumulative positivity rate of Flu A + Flu B was observed in 2023 (31.9%), whereas the lowest rate occurred during the COVID-19 pandemic (2020-2022), with a nadir in 2021 (2.0%). Flu A remained the predominant subtype in HD except in 2021, whereas CNIC data showed a relatively higher proportion of Flu B. Weekly positivity rates displayed distinct seasonal trends in CNIC data but not in HD. A comparative analysis of pre-pandemic (2019), pandemic (2020-2022), and post-pandemic (2023-2024) phases indicated that NPIs had a stronger suppressive effect on Flu A than on Flu B.

CONCLUSION

Hospital-based and national influenza surveillance data showed heterogeneity in subtype proportions, seasonal trends, and pandemic-related impacts. These findings underscore the importance of integrating multiple surveillance sources for a comprehensive understanding of influenza dynamics. Enhancing vaccine coverage, implementing targeted public health interventions, and optimizing resource allocation are crucial for mitigating the influenza burden in the post-pandemic era.

摘要

背景

甲型流感(Flu A)和乙型流感(Flu B)是季节性流行的主要原因,在全球范围内导致了显著的发病率和死亡率。了解它们的流行病学趋势对于优化预防和控制策略至关重要。

目的

本研究旨在分析甲型流感和乙型流感的流行病学趋势,比较基于医院和全国监测的数据,并评估COVID-19对流感传播的影响,为流感控制措施提供科学依据。

方法

我们分析了2019年至2024年期间四川锦欣西南妇女儿童医院数据(HD)和中国国家流感中心(CNIC)的流感阳性率。评估了时间趋势、亚型分布和非药物干预(NPIs)的效果。

结果

流感活动呈现出显著的时间变化。在HD中,2023年观察到甲型流感+乙型流感的最高累积阳性率(31.9%),而最低率出现在COVID-19大流行期间(2020-2022年),2021年达到最低点(2.0%)。除2021年外,甲型流感在HD中仍然是主要亚型,而CNIC数据显示乙型流感的比例相对较高。CNIC数据中的每周阳性率呈现出明显的季节性趋势,而HD中则没有。对大流行前(2019年)、大流行期间(2020-2022年)和大流行后(2023-2024年)阶段的比较分析表明,NPIs对甲型流感的抑制作用比对乙型流感更强。

结论

基于医院和全国的流感监测数据在亚型比例、季节性趋势和与大流行相关的影响方面存在异质性。这些发现强调了整合多个监测来源以全面了解流感动态的重要性。提高疫苗接种覆盖率、实施有针对性的公共卫生干预措施和优化资源分配对于减轻大流行后时代的流感负担至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f9a/12198144/e1f3a255f01e/fcimb-15-1603369-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验