Suppr超能文献

新地方病流行态势下超额死亡率的实时监测

Real-time monitoring of excess mortality under a new endemic regime.

作者信息

Kandula Sasikiran, de Blasio Birgitte F, LeBlanc Marissa

机构信息

Norwegian Institute of Public Health, Oslo, Norway.

Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.

出版信息

Euro Surveill. 2025 Jun;30(25). doi: 10.2807/1560-7917.ES.2025.30.25.2400753.

Abstract

BACKGROUNDMonitoring of mortality to identify trends and detect deviations from normal levels is an essential part of routine surveillance. In many European countries, disruptions in mortality patterns from the COVID-19 pandemic have required revisions to expected mortality estimates (and models) in the current endemic phase of SARS-CoV-2.AIMTo identify essential characteristics for future mortality surveillance and describe two Bayesian methods that satisfy these criteria while being robust to past periods of high COVID-19 mortality. We demonstrate their application in 19 European countries and subnational estimates in the United States, and report measures of model calibration.METHODSWe used a generalised additive model (GAM) with smoothed spline terms for annual trend and within-year seasonality and a generalised linear model (GLM) with a Serfling component for within-year seasonality and breakpoints to detect trend changes in trend. Both approaches modelled change in population size and group-specific (age and sex) mortality patterns.RESULTSModels were well-calibrated and able to estimate national and group-specific mortality before and during the acute COVID-19 pandemic phase. The effect of inclusion of mortality from the acute pandemic period was primarily an increase in uncertainty in expected mortality over the projection period. The GAM approach had better calibration and less variability in bias among countries.CONCLUSIONModels that can adapt to mortality anomalies seen during the acute COVID-19 pandemic period without a need for adjustments to observational data, or tailoring of model specifications, are feasible. The proposed methods can complement operational national and inter-agency surveillance systems currently used in Europe.

摘要

背景

监测死亡率以识别趋势并检测与正常水平的偏差是常规监测的重要组成部分。在许多欧洲国家,新冠疫情导致的死亡率模式中断要求在当前新冠病毒地方性流行阶段对预期死亡率估计(及模型)进行修订。

目的

确定未来死亡率监测的基本特征,并描述两种贝叶斯方法,这两种方法满足这些标准,同时对过去新冠死亡率高的时期具有稳健性。我们展示它们在19个欧洲国家的应用以及在美国的次国家级估计,并报告模型校准的指标。

方法

我们使用了一个广义相加模型(GAM),其中带有用于年度趋势和年内季节性的平滑样条项,以及一个广义线性模型(GLM),带有用于年内季节性和断点的塞尔弗林分量以检测趋势变化。两种方法都对人口规模变化和特定群体(年龄和性别)的死亡率模式进行了建模。

结果

模型校准良好,能够估计急性新冠疫情阶段之前和期间的国家及特定群体死亡率。纳入急性疫情期间死亡率的影响主要是在预测期内预期死亡率的不确定性增加。GAM方法校准更好,各国间偏差的变异性更小。

结论

能够适应急性新冠疫情期间出现的死亡率异常情况,而无需对观测数据进行调整或调整模型规格的模型是可行的。所提出的方法可以补充欧洲目前使用的国家和跨机构业务监测系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验