Hosseini Kaveh, Anaraki Nazanin, Dastjerdi Parham, Kazemian Sina, Hasanzad Mandana, Alkhouli Mohamad, Alam Mahboob, Nasir Khurram, Rana Jamal S, Bhatt Ami B
Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
JACC Adv. 2025 Jun;4(6 Pt 2):101803. doi: 10.1016/j.jacadv.2025.101803.
Despite advances in cardiovascular disease risk stratification, traditional risk prediction models often fail to identify high-risk individuals before adverse events occur, underscoring the need for more precise tools. Polygenic risk scores (PRS) quantify genetic susceptibility by aggregating genetic variants but face challenges in practice. This systematic review investigates how artificial intelligence (AI) and machine learning algorithms can optimize PRS (AI-optimized PRS) to improve cardiovascular disease prediction. Analyzing 13 studies, we found that AI-optimized PRS models enhance predictive accuracy by improving feature selection, handling high-dimensional data, and integrating diverse variables-including clinical risk factors, biomarkers, imaging, and combining multiple PRS. These models outperform nonoptimized PRS models, providing a more comprehensive understanding of individual risk profiles. Evidence suggests that AI-optimized PRS can better stratify patients and guide personalized prevention strategies. Future research is needed to explore sex differences, include diverse populations, integrate AI-optimized PRS into electronic health records, and assess cost-effectiveness.
尽管心血管疾病风险分层取得了进展,但传统的风险预测模型往往无法在不良事件发生前识别出高危个体,这凸显了对更精确工具的需求。多基因风险评分(PRS)通过汇总基因变异来量化遗传易感性,但在实践中面临挑战。本系统综述研究了人工智能(AI)和机器学习算法如何优化PRS(AI优化的PRS)以改善心血管疾病预测。通过分析13项研究,我们发现AI优化的PRS模型通过改进特征选择、处理高维数据以及整合包括临床风险因素、生物标志物、影像学等多种变量以及结合多个PRS来提高预测准确性。这些模型优于未优化的PRS模型,能更全面地了解个体风险概况。有证据表明,AI优化的PRS可以更好地对患者进行分层并指导个性化预防策略。未来需要开展研究以探索性别差异、纳入不同人群、将AI优化的PRS整合到电子健康记录中并评估成本效益。