Suppr超能文献

将基因组学与心脏病临床实践相联系:人工智能在优化多基因风险评分中的应用:一项系统综述

Bridging Genomics to Cardiology Clinical Practice: Artificial Intelligence in Optimizing Polygenic Risk Scores: A Systematic Review.

作者信息

Hosseini Kaveh, Anaraki Nazanin, Dastjerdi Parham, Kazemian Sina, Hasanzad Mandana, Alkhouli Mohamad, Alam Mahboob, Nasir Khurram, Rana Jamal S, Bhatt Ami B

机构信息

Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

JACC Adv. 2025 Jun;4(6 Pt 2):101803. doi: 10.1016/j.jacadv.2025.101803.

Abstract

Despite advances in cardiovascular disease risk stratification, traditional risk prediction models often fail to identify high-risk individuals before adverse events occur, underscoring the need for more precise tools. Polygenic risk scores (PRS) quantify genetic susceptibility by aggregating genetic variants but face challenges in practice. This systematic review investigates how artificial intelligence (AI) and machine learning algorithms can optimize PRS (AI-optimized PRS) to improve cardiovascular disease prediction. Analyzing 13 studies, we found that AI-optimized PRS models enhance predictive accuracy by improving feature selection, handling high-dimensional data, and integrating diverse variables-including clinical risk factors, biomarkers, imaging, and combining multiple PRS. These models outperform nonoptimized PRS models, providing a more comprehensive understanding of individual risk profiles. Evidence suggests that AI-optimized PRS can better stratify patients and guide personalized prevention strategies. Future research is needed to explore sex differences, include diverse populations, integrate AI-optimized PRS into electronic health records, and assess cost-effectiveness.

摘要

尽管心血管疾病风险分层取得了进展,但传统的风险预测模型往往无法在不良事件发生前识别出高危个体,这凸显了对更精确工具的需求。多基因风险评分(PRS)通过汇总基因变异来量化遗传易感性,但在实践中面临挑战。本系统综述研究了人工智能(AI)和机器学习算法如何优化PRS(AI优化的PRS)以改善心血管疾病预测。通过分析13项研究,我们发现AI优化的PRS模型通过改进特征选择、处理高维数据以及整合包括临床风险因素、生物标志物、影像学等多种变量以及结合多个PRS来提高预测准确性。这些模型优于未优化的PRS模型,能更全面地了解个体风险概况。有证据表明,AI优化的PRS可以更好地对患者进行分层并指导个性化预防策略。未来需要开展研究以探索性别差异、纳入不同人群、将AI优化的PRS整合到电子健康记录中并评估成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b65/12277611/98b4e83bca49/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验