Suppr超能文献

在基层医疗环境中,用于诊断土壤传播的蠕虫感染的加藤-卡茨涂片的人工智能辅助显微镜检查与手工显微镜检查对比

AI-supported versus manual microscopy of Kato-Katz smears for diagnosis of soil-transmitted helminth infections in a primary healthcare setting.

作者信息

von Bahr Joar, Suutala Antti, Kucukel Hakan, Kaingu Harrison, Kinyua Felix, Muinde Martin, Osundwa Kevan, Ronald Wigina, Muinde Jackson, Ngasala Billy, Lundin Mikael, Mårtensson Andreas, Linder Nina, Lundin Johan

机构信息

Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.

出版信息

Sci Rep. 2025 Jun 27;15(1):20332. doi: 10.1038/s41598-025-07309-7.

Abstract

Soil-transmitted helminths primarily comprise Ascaris lumbricoides, Trichuris trichiura, and hookworms, infecting more than 600 million people globally, particularly in underserved communities. Manual microscopy of Kato-Katz thick smears is a widely used diagnostic method in monitoring and control programs, but is time-consuming, requires on-site experts and has low sensitivity, especially for light intensity infections. In this study, portable whole-slide scanners and deep learning-based artificial intelligence (AI) were deployed in a primary healthcare setting in Kenya. Stool samples (n = 965) were collected from school children and Kato-Katz thick smears were digitized for AI-based detection. Light-intensity infections accounted for 96.7% of cases. Three diagnostic methods - manual microscopy, autonomous AI and human expert-verified AI - were compared to a composite reference standard, which combined expert-verified helminth eggs in physical and digital smears. Sensitivity for A. lumbricoides, T. trichiura and hookworms was 50.0%, 31.2%, and 77.8% for manual microscopy; 50.0%, 84.4%, and 87.4% for the autonomous AI; and 100%, 93.8%, and 92.2% for expert-verified AI in smears suitable for analysis (n = 704). Specificity exceeded 97% across all methods. The expert-verified AI had higher sensitivity than the other methods while maintaining high specificity for the detection of soil-transmitted helminths in Kato-Katz thick smears, especially in light-intensity infections.

摘要

土源性蠕虫主要包括蛔虫、鞭虫和钩虫,全球感染人数超过6亿,在医疗服务不足的社区尤为常见。改良加藤厚涂片法的人工显微镜检查是监测和控制项目中广泛使用的诊断方法,但该方法耗时、需要现场专家且灵敏度低,尤其是对于轻度感染。在本研究中,便携式全玻片扫描仪和基于深度学习的人工智能(AI)被部署到肯尼亚的一个基层医疗环境中。从学童中收集粪便样本(n = 965),并将改良加藤厚涂片数字化以进行基于AI的检测。轻度感染占病例的96.7%。将三种诊断方法——人工显微镜检查、自主AI和人工专家验证AI——与一种综合参考标准进行比较,该标准结合了物理涂片和数字涂片中经专家验证的蠕虫卵。在适合分析的涂片(n = 704)中,蛔虫、鞭虫和钩虫的人工显微镜检查灵敏度分别为50.0%、31.2%和77.8%;自主AI分别为50.0%、84.4%和87.4%;人工专家验证AI分别为100%、93.8%和92.2%。所有方法的特异性均超过97%。人工专家验证AI在改良加藤厚涂片中检测土源性蠕虫时,灵敏度高于其他方法,同时保持了高特异性,尤其是在轻度感染中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3805/12205037/ff8cc7a231f3/41598_2025_7309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验