Pisula Juan I, Helbig Doris, Sancéré Lucas, Persa Oana-Diana, Bürger Corinna, Fröhlich Anne, Lorenz Carina, Bingmann Sandra, Niebel Dennis, Drexler Konstantin, Landsberg Jennifer, Thomas Roman, Bozek Katarzyna, Brägelmann Johannes
Institute for Biomedical Informatics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln, Germany.
Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln, Germany.
NPJ Precis Oncol. 2025 Jun 28;9(1):205. doi: 10.1038/s41698-025-00997-4.
Predicting cancer patient disease progression is a key step towards personalized medicine and secondary prevention. Risk stratification systems based on clinico-pathological criteria aim to identify high-risk patients, but accurate predictions remain challenging. Deep learning models present new opportunities for patient risk prediction, yet their interpretability has been largely unexplored. We developed a transformer-based approach for predicting progression of cutaneous squamous cell carcinoma (cSCC) patients based on diagnostic histopathology tumor slides. Our initial model showed AUROC = 0.92 on a held-out test set, with average AUROC of 0.65 on external validation cohorts. To further increase generalizability and reduce potential privacy concerns, we trained the model in a federated manner across three clinical centers, reaching AUROC = 0.82 across all cohorts, with image-based risk scores achieving hazard ratios up to 7.42 (p < 0.01) in multivariable analyses. Through interpretability analysis, we identified spatial and morphological features predictive of progression, suggesting that tumor boundary information and tissue heterogeneity characterize progressive cSCCs. Trained exclusively on routine diagnostic slides and offering biological insights, our model can improve secondary prevention and understanding of cSCC while enabling deployment across clinical centers without administrative overheads or privacy concerns.
预测癌症患者的疾病进展是迈向个性化医疗和二级预防的关键一步。基于临床病理标准的风险分层系统旨在识别高危患者,但准确预测仍然具有挑战性。深度学习模型为患者风险预测带来了新机遇,但其可解释性在很大程度上尚未得到探索。我们开发了一种基于Transformer的方法,用于根据诊断性组织病理学肿瘤切片预测皮肤鳞状细胞癌(cSCC)患者的疾病进展。我们的初始模型在一个留出的测试集上显示出AUROC = 0.92,在外部验证队列中的平均AUROC为0.65。为了进一步提高泛化能力并减少潜在的隐私问题,我们在三个临床中心以联邦方式训练该模型,在所有队列中达到了AUROC = 0.82,基于图像的风险评分在多变量分析中实现了高达7.42的风险比(p < 0.01)。通过可解释性分析,我们确定了预测疾病进展的空间和形态特征,这表明肿瘤边界信息和组织异质性是进展性cSCC的特征。我们的模型仅在常规诊断切片上进行训练并提供生物学见解,它可以改善cSCC的二级预防和对其的理解,同时能够在各临床中心进行部署,而无需承担管理费用或隐私问题。