Suppr超能文献

剖析咖啡因在裂殖酵母中的细胞周期调控、DNA损伤敏感性及寿命影响。

Dissecting the cell cycle regulation, DNA damage sensitivity and lifespan effects of caffeine in fission yeast.

作者信息

Alao John-Patrick, Kumar Juhi, Stamataki Despina, Rallis Charalampos

机构信息

Research Centre of Molecular Cell Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.

The Francis Crick Institute, London, United Kingdom.

出版信息

Microb Cell. 2025 Jun 24;12:141-156. doi: 10.15698/mic2025.06.852. eCollection 2025.

Abstract

Caffeine can modulate cell cycle progression, override DNA damage checkpoint signalling and increase chronological lifespan (CLS) in various model systems. Early studies suggested that caffeine inhibits the phosphatidylinositol 3-kinase-related kinase (PIKK) Rad3 to override DNA damage-induced cell cycle arrest in fission yeast. We have previously suggested that caffeine modulates cell cycle progression and lifespan by inhibiting the Target of Rapamycin Complex 1 (TORC1). Nevertheless, whether this inhibition is direct or not, has remained elusive. TORC1 controls metabolism and mitosis timing by integrating nutrients and environmental stress response (ESR) signalling. Nutritional or other stresses activate the Sty1-Ssp1-Ssp2 (AMP-activated protein kinase complex, AMPK) pathway, which inhibits TORC1 and accelerates mitosis through Sck2 inhibition. Additionally, activation of the ESR pathway can extend lifespan in fission yeast. Here, we demonstrate that caffeine indirectly activates Ssp1, Ssp2 and the AMPKβ regulatory subunit Amk2 to advance mitosis. Ssp2 is phosphorylated in an Ssp1-dependent manner following exposure to caffeine. Furthermore, Ssp1 and Amk2, are required for resistance to caffeine under conditions of prolonged genotoxic stress. The effects of caffeine on DNA damage sensitivity are uncoupled from mitosis in AMPK pathway mutants. We propose that caffeine interacts synergistically with other genotoxic agents to increase DNA damage sensitivity. Our findings show that caffeine accelerates mitotic division and is beneficial for CLS through AMPK. Direct pharmacological targeting of AMPK may serve towards healthspan and lifespan benefits beyond yeasts, given the highly conserved nature of this key regulatory cellular energy sensor.

摘要

咖啡因可调节细胞周期进程,在各种模型系统中克服DNA损伤检查点信号传导并延长时序寿命(CLS)。早期研究表明,咖啡因抑制磷脂酰肌醇3-激酶相关激酶(PIKK)Rad3,从而在裂殖酵母中克服DNA损伤诱导的细胞周期停滞。我们之前曾提出,咖啡因通过抑制雷帕霉素复合物1靶标(TORC1)来调节细胞周期进程和寿命。然而,这种抑制是否直接尚不清楚。TORC1通过整合营养和环境应激反应(ESR)信号来控制代谢和有丝分裂时间。营养或其他应激激活Sty1-Ssp1-Ssp2(AMP活化蛋白激酶复合物,AMPK)途径,该途径抑制TORC1并通过抑制Sck2加速有丝分裂。此外,ESR途径的激活可延长裂殖酵母的寿命。在这里,我们证明咖啡因间接激活Ssp1、Ssp2和AMPKβ调节亚基Amk2以促进有丝分裂。暴露于咖啡因后,Ssp2以Ssp1依赖的方式磷酸化。此外,在长期遗传毒性应激条件下,Ssp1和Amk2是抵抗咖啡因所必需的。在AMPK途径突变体中,咖啡因对DNA损伤敏感性的影响与有丝分裂无关。我们提出咖啡因与其他遗传毒性剂协同作用以增加DNA损伤敏感性。我们的研究结果表明,咖啡因通过AMPK加速有丝分裂并对CLS有益。鉴于这种关键的细胞能量调节传感器具有高度保守性,直接对AMPK进行药理学靶向可能有助于实现酵母以外的健康和寿命益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ac/12203419/41e787ad5af2/mic-12-141-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验