Suppr超能文献

通过配位钾离子稳定鸟嘌呤四联体片层中的Hoogsteen氢键以提高富含鸟嘌呤的DNA纳米马达的效率。

Stabilization of Hoogsteen H-bonds in G-quartet sheets by coordinated K ion for enhanced efficiency in guanine-rich DNA nanomotor.

作者信息

Barzegar Abolfazl, Tohidifar Nastaran

机构信息

Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.

Research Center of Biosciences and Biotechnology (RCBB), University of Tabriz, Tabriz, Iran.

出版信息

Bioimpacts. 2025 May 3;15:30596. doi: 10.34172/bi.30596. eCollection 2025.

Abstract

INTRODUCTION

G-rich DNA nanomotors function as nanoscale devices and nanoswitches powered by the conversion of chemical energy into mechanical motion through transitions between duplex (DU) and tetraplex (TE) conformations. The stability of the TE conformation, crucial for nanomotor function, relies on G-quadruplex structures formed by guanine quartets. However, the detailed factors influencing TE stability remain unclear.

METHODS

This study investigated the role of coordinated K ion and Hoogsteen H-bonds in stabilizing the TE structure of a truncated 15-nucleotide G-rich DNA nanomotor with the sequence GGTTGGTGTGGTTGG using atomic-scale computational analysis. Three systems were simulated: TE1K with a crystal K ion, TE2K with a manually embedded K ion, and TE3 lacking a K ion. All systems underwent molecular dynamics simulations using the Amber force field and TIP3P water model.

RESULTS

The simulations revealed a clear dependence of G-quadruplex rigidity and TE conformation stability on the presence of coordinated K ion. TE1K and TE2K, containing K ions, exhibited significantly lower RMSD values compared to TE3, indicating more excellent structural stability and rigidity. K ion coordination facilitated the formation of all eight Hoogsteen H-bonds within G-quartets, whereas the K ion-free system (TE3) displayed distorted G-quadruplexes and a reduction in H-bonds, leading to a less stable "wobble TE*" state. The diameter of G-quartets and the radius of gyration (Rg) further supported these observations, with TE1K and TE2K maintaining compact structures compared to the more open and flexible "wobble TE*" conformation in TE3.

CONCLUSION

These findings demonstrate that coordinated K ion play a critical role in stabilizing the TE conformation of G-rich DNA nanomotors by promoting G-quadruplex rigidity and facilitating Hoogsteen H-bond formation. This enhanced stability is essential for efficient DNA nanomotor function in the DU-TE nanoswitching process.

摘要

引言

富含鸟嘌呤的DNA纳米马达作为纳米级装置和纳米开关,通过双链(DU)和四链体(TE)构象之间的转变,将化学能转化为机械运动来提供动力。TE构象的稳定性对纳米马达功能至关重要,它依赖于鸟嘌呤四联体形成的G-四链体结构。然而,影响TE稳定性的详细因素仍不清楚。

方法

本研究使用原子尺度计算分析,研究了配位钾离子和Hoogsteen氢键在稳定截短的15个核苷酸富含鸟嘌呤的DNA纳米马达(序列为GGTTGGTGTGGTTGG)的TE结构中的作用。模拟了三个系统:含有晶体钾离子的TE1K、手动嵌入钾离子的TE2K和不含钾离子的TE3。所有系统均使用Amber力场和TIP3P水模型进行分子动力学模拟。

结果

模拟结果表明,G-四链体的刚性和TE构象稳定性明显依赖于配位钾离子的存在。与TE3相比,含有钾离子的TE1K和TE2K的均方根偏差(RMSD)值显著更低,表明其结构稳定性和刚性更佳。钾离子配位促进了G-四联体中所有八个Hoogsteen氢键的形成,而无钾离子系统(TE3)则显示出扭曲的G-四链体和氢键减少,导致形成较不稳定的“摆动TE*”状态。G-四联体的直径和回转半径(Rg)进一步支持了这些观察结果,与TE3中更开放和灵活的“摆动TE*”构象相比,TE1K和TE2K保持紧凑结构。

结论

这些发现表明,配位钾离子通过促进G-四链体刚性和促进Hoogsteen氢键形成,在稳定富含鸟嘌呤的DNA纳米马达的TE构象中起关键作用。这种增强的稳定性对于DU-TE纳米开关过程中高效的DNA纳米马达功能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f93/12204777/5ed134c9ef01/bi-15-30596-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验