Suppr超能文献

构建单个细胞的细胞特异性因果网络以描绘动态生物学过程。

Constructing Cell-Specific Causal Networks of Individual Cells for Depicting Dynamical Biological Processes.

作者信息

Huang Xinzhe, Chen Luonan, Liu Xiaoping

机构信息

Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

School of Mathematical Sciences and School of AI, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Research (Wash D C). 2025 Jun 27;8:0743. doi: 10.34133/research.0743. eCollection 2025.

Abstract

Causal inference is crucial in biological research, as it enables the understanding of complex relationships and dynamic processes that drive cellular behavior, development, and disease. Within this context, gene regulatory network (GRN) inference serves as a key approach for understanding the molecular mechanisms underlying cellular function. Despite substantial advancements, challenges persist in GRN inference, particularly in dynamic rewiring, inferring causality, and context specificity. To tackle these issues, we present single cell-specific causal network (SiCNet), a novel causal network construction method that utilizes single-cell gene expression profiles and a causal inference strategy to construct molecular regulatory networks at a single-cell level. Additionally, SiCNet utilizes cell-specific network information to construct network outdegree matrix (ODM), enhancing the performance of cell clustering. It also enables the construction of context-specific GRNs to identify key regulators of fate transitions for diverse processes such as cellular reprogramming and development. Furthermore, SiCNet can delineate the intricate dynamic regulatory processes involved in development, providing deep insights into the mechanisms governing cellular transitions and the gene regulation across developmental stages.

摘要

因果推断在生物学研究中至关重要,因为它有助于理解驱动细胞行为、发育和疾病的复杂关系和动态过程。在此背景下,基因调控网络(GRN)推断是理解细胞功能背后分子机制的关键方法。尽管取得了重大进展,但GRN推断仍存在挑战,特别是在动态重连、因果关系推断和上下文特异性方面。为了解决这些问题,我们提出了单细胞特异性因果网络(SiCNet),这是一种新颖的因果网络构建方法,它利用单细胞基因表达谱和因果推断策略在单细胞水平构建分子调控网络。此外,SiCNet利用细胞特异性网络信息构建网络出度矩阵(ODM),提高细胞聚类的性能。它还能够构建上下文特异性GRN,以识别细胞重编程和发育等不同过程中命运转变的关键调节因子。此外,SiCNet可以描绘发育过程中涉及的复杂动态调控过程,深入了解控制细胞转变和发育阶段基因调控的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7181/12202884/003f93153968/research.0743.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验