Suppr超能文献

固有动力学可视化器,一个用于评估和可视化基因调控网络推理管道输出的交互式应用程序。

Inherent Dynamics Visualizer, an Interactive Application for Evaluating and Visualizing Outputs from a Gene Regulatory Network Inference Pipeline.

机构信息

Department of Biology, Duke University;

Department of Biology, Duke University.

出版信息

J Vis Exp. 2021 Dec 7(178). doi: 10.3791/63084.

Abstract

Developing gene regulatory network models is a major challenge in systems biology. Several computational tools and pipelines have been developed to tackle this challenge, including the newly developed Inherent Dynamics Pipeline. The Inherent Dynamics Pipeline consists of several previously published tools that work synergistically and are connected in a linear fashion, where the output of one tool is then used as input for the following tool. As with most computational techniques, each step of the Inherent Dynamics Pipeline requires the user to make choices about parameters that don't have a precise biological definition. These choices can substantially impact gene regulatory network models produced by the analysis. For this reason, the ability to visualize and explore the consequences of various parameter choices at each step can help increase confidence in the choices and the results.The Inherent Dynamics Visualizer is a comprehensive visualization package that streamlines the process of evaluating parameter choices through an interactive interface within a web browser. The user can separately examine the output of each step of the pipeline, make intuitive changes based on visual information, and benefit from the automatic production of necessary input files for the Inherent Dynamics Pipeline. The Inherent Dynamics Visualizer provides an unparalleled level of access to a highly intricate tool for the discovery of gene regulatory networks from time series transcriptomic data.

摘要

开发基因调控网络模型是系统生物学的一个主要挑战。已经开发了几种计算工具和流程来解决这个挑战,包括新开发的固有动力学流程。固有动力学流程由几个以前发布的工具组成,这些工具协同工作,以线性方式连接,其中一个工具的输出随后用作下一个工具的输入。与大多数计算技术一样,固有动力学流程的每个步骤都要求用户对没有精确生物学定义的参数进行选择。这些选择可以极大地影响分析产生的基因调控网络模型。出于这个原因,能够可视化和探索每个步骤中各种参数选择的后果,可以帮助增加对选择和结果的信心。固有动力学可视化器是一个全面的可视化工具包,通过网络浏览器中的交互式界面简化了评估参数选择的过程。用户可以分别检查管道的每个步骤的输出,根据视觉信息进行直观的更改,并受益于固有动力学管道的必要输入文件的自动生成。固有动力学可视化器为从时间序列转录组数据中发现基因调控网络提供了无与伦比的访问级别,适用于高度复杂的工具。

相似文献

3
NetSeekR: a network analysis pipeline for RNA-Seq time series data.
BMC Bioinformatics. 2022 Jan 28;23(1):54. doi: 10.1186/s12859-021-04554-1.
5
Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA.
PLoS One. 2015 Nov 18;10(11):e0140268. doi: 10.1371/journal.pone.0140268. eCollection 2015.
6
ESAP plus: a web-based server for EST-SSR marker development.
BMC Genomics. 2016 Dec 22;17(Suppl 13):1035. doi: 10.1186/s12864-016-3328-4.
7
ModuleRole: a tool for modulization, role determination and visualization in protein-protein interaction networks.
PLoS One. 2014 May 1;9(5):e94608. doi: 10.1371/journal.pone.0094608. eCollection 2014.
9
Sopa: a technology-invariant pipeline for analyses of image-based spatial omics.
Nat Commun. 2024 Jun 11;15(1):4981. doi: 10.1038/s41467-024-48981-z.
10
A graph-based approach for designing extensible pipelines.
BMC Bioinformatics. 2012 Jul 12;13:163. doi: 10.1186/1471-2105-13-163.

引用本文的文献

1
Identification and correction of time-series transcriptomic anomalies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf524.
2
Experimental guidance for discovering genetic networks through hypothesis reduction on time series.
PLoS Comput Biol. 2022 Oct 10;18(10):e1010145. doi: 10.1371/journal.pcbi.1010145. eCollection 2022 Oct.

本文引用的文献

1
2
An intrinsic oscillator drives the blood stage cycle of the malaria parasite .
Science. 2020 May 15;368(6492):754-759. doi: 10.1126/science.aba4357.
3
Model Rejection and Parameter Reduction via Time Series.
SIAM J Appl Dyn Syst. 2018;17(2):1589-1616. doi: 10.1137/17M1134548. Epub 2018 May 31.
4
YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts.
Nucleic Acids Res. 2020 Jan 8;48(D1):D642-D649. doi: 10.1093/nar/gkz859.
5
The cell-cycle transcriptional network generates and transmits a pulse of transcription once each cell cycle.
Cell Cycle. 2019 Feb;18(4):363-378. doi: 10.1080/15384101.2019.1570655. Epub 2019 Feb 5.
6
DSGRN: Examining the Dynamics of Families of Logical Models.
Front Physiol. 2018 May 23;9:549. doi: 10.3389/fphys.2018.00549. eCollection 2018.
7
The Local Edge Machine: inference of dynamic models of gene regulation.
Genome Biol. 2016 Oct 19;17(1):214. doi: 10.1186/s13059-016-1076-z.
8
Combining tree-based and dynamical systems for the inference of gene regulatory networks.
Bioinformatics. 2015 May 15;31(10):1614-22. doi: 10.1093/bioinformatics/btu863. Epub 2015 Jan 7.
9
Causal network inference using biochemical kinetics.
Bioinformatics. 2014 Sep 1;30(17):i468-74. doi: 10.1093/bioinformatics/btu452.
10
Wisdom of crowds for robust gene network inference.
Nat Methods. 2012 Jul 15;9(8):796-804. doi: 10.1038/nmeth.2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验