Suppr超能文献

家禽对禽流感病毒的遗传弹性或抗性:海市蜃楼还是现实?

Genetic resilience or resistance in poultry against avian influenza virus: mirage or reality?

作者信息

Chen Paula R, White Stephen N, Walker Lianna R, Kapczynski Darrell R, Suarez David L

机构信息

Plant Genetics Research Unit, Agricultural Research Service, USDA, Columbia, Missouri, USA.

Poultry Microbiological Safety and Processing Research Unit, US National Poultry Research Center, Agricultural Research Service, USDA, Athens, Georgia, USA.

出版信息

J Virol. 2025 Jul 22;99(7):e0082025. doi: 10.1128/jvi.00820-25. Epub 2025 Jun 30.

Abstract

The unprecedented global spread of the highly pathogenic avian influenza (HPAI) virus in wild birds, poultry, and mammalian species has challenged our control efforts. Alternative approaches to limit avian influenza viruses (AIV) include the development of resilient or resistant chickens. Genetically resilient birds may become infected but can overcome disease, whereas resistant birds prevent virus attachment or entry and do not become infected. The most intensively studied host gene is myxovirus-resistance (), which is expressed via the interferon pathway. Both sensitive and resistant chicken genotypes have been described, but this only provides limited resilience. Acidic nuclear phosphoprotein 32 family member A () has been demonstrated as a host cofactor for AIV replication via interaction with the polymerase. Small nucleotide changes within this gene have demonstrated some promise for the establishment of disease resilience. Certain MHC-defined genetic chicken lines have demonstrated increased resilience with higher innate immune responses, but HPAI-infected birds still have high morbidity and mortality. Alternatively, gene-edited or -transgenic chickens have had some success in increasing resilience. This strategy allows flexibility to include foreign genes, modification of existing genes, or combined approaches to block critical steps in the viral life cycle. Some candidate genes include solute carrier 35A1 (), retinoic acid-inducible gene I (), and toll-like receptors 3 and 7 (), but animal testing needs to be conducted. Furthermore, existing hurdles for technology transfer to commercial application from either naturally occurring resistance genes or foreign genes remain high and will require acceptance by both the poultry industry and consumers.

摘要

高致病性禽流感(HPAI)病毒在野生鸟类、家禽和哺乳动物物种中前所未有的全球传播对我们的防控努力构成了挑战。限制禽流感病毒(AIV)的替代方法包括培育具有弹性或抗性的鸡。具有遗传弹性的鸟类可能会被感染,但能够战胜疾病,而具有抗性的鸟类则可阻止病毒附着或进入,不会被感染。研究最为深入的宿主基因是黏液病毒抗性(Mx),它通过干扰素途径表达。已描述了敏感和抗性鸡的基因型,但这仅提供了有限的弹性。酸性核磷蛋白32家族成员A(ANP32A)已被证明是AIV复制的宿主辅助因子,通过与聚合酶相互作用发挥作用。该基因内的小核苷酸变化已显示出在建立疾病弹性方面具有一定前景。某些由主要组织相容性复合体(MHC)定义的遗传鸡系已显示出具有更高的先天免疫反应,从而增强了弹性,但感染HPAI的鸟类仍具有较高的发病率和死亡率。另外,基因编辑或转基因鸡在提高弹性方面已取得了一些成功。这种策略具有灵活性,可以包括引入外源基因、修饰现有基因或采用联合方法来阻断病毒生命周期中的关键步骤。一些候选基因包括溶质载体35A1(SLC35A1)、视黄酸诱导基因I(RIG-I)以及Toll样受体3和7(TLR3和TLR7),但仍需进行动物试验。此外,从天然存在的抗性基因或外源基因向商业应用进行技术转移的现有障碍仍然很高,需要家禽行业和消费者都予以接受。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da8d/12282110/27c9416c23e8/jvi.00820-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验