Suppr超能文献

皮肤鳞状细胞癌神经周围扩散的不寻常形态学表现:综合分子分析和机器学习辅助诊断

Unusual Morphologic Presentation of Perineural Spread From Cutaneous Squamous Cell Carcinoma: Diagnosis Aided by Comprehensive Molecular Analysis and Machine Learning.

作者信息

Ramineni Madhurya, Ghani Hassan, Smoller Bruce R, Bharadwaj Rajnish

机构信息

Department of Pathology, University of Rochester Medical Center, Rochester, New York, USA.

Caris Life Sciences, Phoenix, Arizona, USA.

出版信息

J Cutan Pathol. 2025 Sep;52(9):568-573. doi: 10.1111/cup.14832. Epub 2025 Jun 30.

Abstract

Neoplasms of unknown primary frequently pose a diagnostic challenge due to their nonspecific morphological and immunohistochemical features. Definitive classification of these neoplasms has a profound impact on treatment decisions. Mutational and gene expression profiling can provide diagnostic and prognostic information in these challenging cases. We present a case of pontine and cranial nerve lesions in an elderly male with no clinically identifiable index lesion at the time of presentation. The lesion's morphology and immunoprofile did not provide a definitive diagnosis. The whole-exome and transcriptome sequencing identified a UV signature confirming the tumor's cutaneous origin. In addition, pathogenic mutations in multiple genes, including those frequently associated with squamous cell carcinoma (e.g., NOTCH1), were identified. The molecular data was also analyzed by "Caris MI GPSai," a machine-learning algorithm that compares the neoplasm's gene expression and mutational profile against an extensive reference database of genomic and transcriptomic alterations observed in various neoplasms. This predicted the cancer to be cutaneous squamous cell carcinoma with a 66% probability, enabling appropriate treatment for the patient. This case highlights the deceptive morphology of cutaneous squamous cell carcinoma with perineural spread and demonstrates how molecular profiling with machine learning can aid in achieving a definitive diagnosis.

摘要

原发性不明肿瘤因其非特异性的形态学和免疫组化特征,常常给诊断带来挑战。这些肿瘤的明确分类对治疗决策有着深远影响。在这些具有挑战性的病例中,突变和基因表达谱分析能够提供诊断和预后信息。我们报告一例老年男性桥脑和颅神经病变病例,患者就诊时临床上未发现明确的原发病变。病变的形态学和免疫表型未能提供明确诊断。全外显子组和转录组测序发现了紫外线特征,证实肿瘤起源于皮肤。此外,还鉴定出多个基因的致病突变,包括那些常与鳞状细胞癌相关的基因(如NOTCH1)。分子数据还通过“Caris MI GPSai”进行分析,这是一种机器学习算法,可将肿瘤的基因表达和突变谱与在各种肿瘤中观察到的广泛的基因组和转录组改变参考数据库进行比较。这预测该癌症为皮肤鳞状细胞癌的概率为66%,从而能够为患者实施恰当的治疗。该病例突出了伴有神经周围扩散的皮肤鳞状细胞癌具有欺骗性的形态,并展示了机器学习分子谱分析如何有助于实现明确诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验