Kinz Marvin, Molodowitch Christina, Killoran Joseph, Hesser Jürgen, Zygmanski Piotr
Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, United States of America.
Mannheim Institute for Intelligent Systems in Medicine (MIISM), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Biomed Phys Eng Express. 2025 Jul 17;11(4). doi: 10.1088/2057-1976/ade9cb.
Radiotherapy (RT) has become increasingly sophisticated, necessitating advanced tools for analyzing extensive treatment data in hospital databases. Such analyses can enhance future treatments, particularly through Knowledge-Based Planning, and aid in developing new treatment modalities like convergent kV RT.The objective is to develop automated software tools for large-scale retrospective analysis of over 10,000 MeV x-ray radiotherapy plans. This aims to identify trends and references in plans delivered at our institution across all treatment sites, focusing on: (A) Planning-Target-Volume, Clinical-Target-Volume, Gross-Tumor-Volume, and Organ-At-Risk (PTV/CTV/GTV/OAR) topology, morphology, and dosimetry, and (B) RT plan efficiency and complexity.The software tools are coded in Python. Topological metrics are evaluated using principal component analysis, including center of mass, volume, size, and depth. Morphology is quantified using Hounsfield Units, while dose distribution is characterized by conformity and homogeneity indexes. The total dose within the target versus the body is defined as the Dose Balance Index.The primary outcome of this study is the toolkit and an analysis of our database. For example, the mean minimum and maximum PTV depths are about 2.5±2.3 cm and 9±3 cm, respectively.This study provides a statistical basis for RT plans and the necessary tools to generate them. It aids in selecting plans for knowledge-based models and deep-learning networks. The site-specific volume and depth results help identify the limitations and opportunities of current and future treatment modalities, in our case convergent kV RT. The compiled statistics and tools are versatile for training, quality assurance, comparing plans from different periods or institutions, and establishing guidelines. The toolkit is publicly available athttps://github.com/m-kinz/STAR.
放射治疗(RT)已经变得越来越复杂,这就需要先进的工具来分析医院数据库中的大量治疗数据。这样的分析可以改善未来的治疗,特别是通过基于知识的规划,并有助于开发新的治疗方式,如收敛千伏放射治疗。目标是开发用于对超过10000兆电子伏特X射线放射治疗计划进行大规模回顾性分析的自动化软件工具。这旨在识别我们机构在所有治疗部位实施的计划中的趋势和参考标准,重点关注:(A)计划靶体积、临床靶体积、大体肿瘤体积和危及器官(PTV/CTV/GTV/OAR)的拓扑结构、形态和剂量测定,以及(B)放射治疗计划的效率和复杂性。这些软件工具用Python编写。使用主成分分析评估拓扑指标,包括质心、体积、大小和深度。形态学用亨氏单位进行量化,而剂量分布则用适形度和均匀性指数来表征。靶区内与身体内的总剂量之比定义为剂量平衡指数。本研究的主要成果是该工具包以及对我们数据库进行的分析。例如,PTV的平均最小和最大深度分别约为2.5±2.3厘米和9±3厘米。本研究为放射治疗计划提供了统计依据以及生成这些计划所需的工具。它有助于为基于知识的模型和深度学习网络选择计划。特定部位的体积和深度结果有助于识别当前和未来治疗方式(在我们的案例中为收敛千伏放射治疗)的局限性和机会。汇编的统计数据和工具对于培训、质量保证、比较不同时期或机构的计划以及制定指南具有通用性。该工具包可在https://github.com/m-kinz/STAR上公开获取。