Jia Minxue, Mao Haiyi, Zhou Mengli, Chen Yu-Chih, Benos Panayiotis V
Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA.
Mol Syst Biol. 2025 Jun 30. doi: 10.1038/s44320-025-00115-3.
Gene expression programs that establish and maintain specific cellular states are orchestrated through a regulatory network composed of transcription factors, cofactors, and chromatin regulators. Dysregulation of this network can lead to a broad range of diseases by altering gene programs. This article presents LaGrACE, a novel method designed to estimate dysregulation of gene programs combining omics data with clinical information. This approach facilitates the grouping of samples exhibiting similar patterns of gene program dysregulation, thereby enhancing the discovery of underlying molecular mechanisms in disease subpopulations. We rigorously evaluated LaGrACE's performance using synthetic data, bulk RNA-seq clinical datasets (breast cancer, chronic obstructive pulmonary disease (COPD)), and single-cell RNA-seq drug perturbation datasets. Our findings demonstrate that LaGrACE is exceptionally robust in identifying biologically meaningful and prognostic molecular subtypes. In addition, it effectively discerns drug response signals at a single-cell resolution. Moreover, the COPD analysis uncovered a new role of LEF1 regulator in COPD molecular mechanisms associated with mortality. Collectively, these results underscore the utility of LaGrACE as a valuable tool for elucidating the underlying mechanisms of diseases.
建立和维持特定细胞状态的基因表达程序是通过一个由转录因子、辅助因子和染色质调节因子组成的调控网络精心编排的。该网络的失调可通过改变基因程序导致多种疾病。本文介绍了LaGrACE,这是一种旨在结合组学数据和临床信息来估计基因程序失调的新方法。这种方法有助于对表现出相似基因程序失调模式的样本进行分组,从而加强对疾病亚群潜在分子机制的发现。我们使用合成数据、批量RNA测序临床数据集(乳腺癌、慢性阻塞性肺疾病(COPD))和单细胞RNA测序药物扰动数据集对LaGrACE的性能进行了严格评估。我们的研究结果表明,LaGrACE在识别具有生物学意义和预后的分子亚型方面异常稳健。此外,它能在单细胞分辨率下有效识别药物反应信号。此外,COPD分析揭示了LEF1调节因子在与死亡率相关的COPD分子机制中的新作用。总的来说,这些结果强调了LaGrACE作为阐明疾病潜在机制的宝贵工具的实用性。