Koul Sakshi, Devecka Luke A, Pierce Mark C, Vazquez Maribel
Department of Biomedical Engineering, Rutgers, The State University of New Jersey; Piscataway, NJ 08854 USA.
Micro (Basel). 2025 Mar;5(1). doi: 10.3390/micro5010010. Epub 2025 Feb 28.
Microscale systems have been underexplored in contemporary regenerative therapies developed to treat vision loss. The pairing of in vitro cell systems with optical fluorescent imaging provides unique opportunities to examine the infiltration of donor stem cells needed for successful transplantation therapies. A parallel eye device was developed to provide electric field (EF) stimulation to guide the migration of cells within 3D eye facsimiles synthesized from different ocular biomaterials. Cell infiltration within facsimiles was rapidly resolved using confocal microscopy to eliminate dependence on the cryostat sectioning commonly used for cell study. Moreover, EF stimulated galvanotaxis of donor cells within different depths of eye facsimiles. Optical imaging provided rapid resolution of z-stack images at physiologically appropriate depths below 500 microns. This study demonstrates that paired microscale-optical systems can be developed to elucidate understudied transplantation processes and improve future outcomes in patients.
在当代用于治疗视力丧失的再生疗法中,微尺度系统尚未得到充分探索。体外细胞系统与光学荧光成像相结合,为研究成功移植疗法所需的供体干细胞浸润提供了独特的机会。开发了一种平行眼装置,以提供电场(EF)刺激,引导细胞在由不同眼部生物材料合成的3D眼模型内迁移。使用共聚焦显微镜快速解析模型内的细胞浸润情况,从而消除了对细胞研究中常用的低温切片的依赖。此外,EF刺激了眼模型不同深度内供体细胞的电趋性。光学成像在500微米以下的生理合适深度快速解析了z-stack图像。这项研究表明,可以开发配对的微尺度光学系统来阐明尚未充分研究的移植过程,并改善未来患者的治疗效果。