文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于影像组学增强的多模态超声用于早期检测肾静脉血栓形成继发的急性肾损伤:一项临床前诊断建模研究

Radiomic-enhanced multimodal ultrasound for early detection of acute kidney injury secondary to renal vein thrombosis: a preclinical diagnostic modeling study.

作者信息

Xu Ziyi, Wang Xinghua, Qiao Nan, Zhang Tao

机构信息

Department of Ultrasound, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China.

Departments of Ultrasound, Second Hospital of Shanxi Medical University, Taiyuan, China.

出版信息

Ren Fail. 2025 Dec;47(1):2525472. doi: 10.1080/0886022X.2025.2525472. Epub 2025 Jul 1.


DOI:10.1080/0886022X.2025.2525472
PMID:40590177
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12217104/
Abstract

Acute kidney injury (AKI) resulting from acute renal vein thrombosis (ARVT) is uncommon, yet it can progress swiftly, requiring prompt diagnosis and intervention. This study aimed to investigate the various multimodal ultrasound techniques, specifically conventional ultrasound (CUS), microvascular flow imaging (MFI), contrast-enhanced ultrasound (CEUS), and shear wave elastography (SWE), in conjunction with radiomics for early diagnosis and assessment of AKI resulting from ARVT using a rabbit model. Twenty healthy adult New Zealand white rabbits with 40 kidneys were included in this study. The left kidneys were designated as the experimental group ( = 20), whereas the right kidneys served as the control group( = 20). Throughout the study, multimodal ultrasound techniques were employed for image acquisition and analysis. The ultrasound images underwent processing, segmentation, feature extraction, and model construction. The dataset was randomly divided in a 7:3 ratio, and the performance of models was assessed through the Receiver Operating Characteristic Curve (ROC) analysis along with key performance metrics. In CUS images, the experimental group showed notable increases in renal volume, cortical thickness, and enhanced cortical echogenicity ( < 0.001,  = 0.032,  < 0.001). In the CDFI, MFI, and CEUS, the experimental group exhibited significant reductions in blood flow perfusion ( < 0.001). In SWE, Young's modulus values for the cortex, medulla, and sinus were significantly elevated in the experimental group ( < 0.001). The strongest correlations were found for creatinine, renal volume, peak systolic velocity of the arcuate artery, time from peak to half-value of sinus, and Young's modulus value for cortex minimum, with Area Under the Curve(AUC) values of 0.600, 0.868, 0.560, 0.503, and 0.982, respectively. The CUS, CDFI, MFI, CEUS, SWE, and CUS+CDFI+MFI+CEUS+SWE radiomics models demonstrated stronger performance, achieving AUC values of 0.899, 0.861, 0.899, 0.833, 0.861, and 0.734, respectively. Multimodal ultrasound combined with radiomics can significantly improve early diagnosis of AKI following ARVT, providing valuable insights for clinical research.

摘要

急性肾静脉血栓形成(ARVT)导致的急性肾损伤(AKI)并不常见,但病情进展迅速,需要及时诊断和干预。本研究旨在利用兔模型,研究多种多模态超声技术,特别是传统超声(CUS)、微血管血流成像(MFI)、超声造影(CEUS)和剪切波弹性成像(SWE),结合影像组学,对ARVT导致的AKI进行早期诊断和评估。本研究纳入了20只健康成年新西兰白兔,共40个肾脏。将左肾指定为实验组(n = 20),右肾作为对照组(n = 20)。在整个研究过程中,采用多模态超声技术进行图像采集和分析。对超声图像进行处理、分割、特征提取和模型构建。数据集按7:3的比例随机划分,并通过受试者操作特征曲线(ROC)分析以及关键性能指标评估模型的性能。在CUS图像中,实验组肾体积、皮质厚度显著增加,皮质回声增强(P < 0.001,P = 0.032,P < 0.001)。在CDFI、MFI和CEUS中,实验组血流灌注显著降低(P < 0.001)。在SWE中,实验组皮质、髓质和窦的杨氏模量值显著升高(P < 0.001)。肌酐、肾体积、弓形动脉收缩期峰值流速、窦部从峰值到半值的时间以及皮质最小值的杨氏模量值之间的相关性最强,曲线下面积(AUC)值分别为0.600、0.868、0.560、0.503和0.982。CUS、CDFI、MFI、CEUS、SWE以及CUS+CDFI+MFI+CEUS+SWE影像组学模型表现更强,AUC值分别为0.899、0.861、0.899、0.833、0.861和0.734。多模态超声结合影像组学可显著提高ARVT后AKI的早期诊断,为临床研究提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3d/12217104/63e3b4eca422/IRNF_A_2525472_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3d/12217104/5af066ab4d39/IRNF_A_2525472_UF0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3d/12217104/773087fec224/IRNF_A_2525472_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3d/12217104/63e3b4eca422/IRNF_A_2525472_F0002_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3d/12217104/5af066ab4d39/IRNF_A_2525472_UF0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3d/12217104/773087fec224/IRNF_A_2525472_F0001_C.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af3d/12217104/63e3b4eca422/IRNF_A_2525472_F0002_C.jpg

相似文献

[1]
Radiomic-enhanced multimodal ultrasound for early detection of acute kidney injury secondary to renal vein thrombosis: a preclinical diagnostic modeling study.

Ren Fail. 2025-12

[2]
The application of multimodal ultrasound examination in the differential diagnosis of benign and malignant breast lesions of BI-RADS category 4.

Front Med (Lausanne). 2025-6-9

[3]
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.

Acad Radiol. 2025-2

[4]
Ultrasound-based radiomic nomogram for predicting the invasive status of breast cancer: a multicenter study.

Eur J Med Res. 2025-7-1

[5]
Platelet count, spleen length, and platelet count-to-spleen length ratio for the diagnosis of oesophageal varices in people with chronic liver disease or portal vein thrombosis.

Cochrane Database Syst Rev. 2017-4-26

[6]
The use of ultrasonography in the diagnosis and management of Acute Kidney Injury and other forms renal dysfunction in the paediatric population: Systematic review protocol.

PLoS One. 2025-6-18

[7]
Efficacy of shear wave elastography in measuring placental stiffness for pre-eclampsia screening and diagnosis: A systematic review and meta-analysis.

Int J Gynaecol Obstet. 2025-6-23

[8]
Multiparameter and Ultrasound Radiomics Nomogram to Predict the Aggressiveness of Papillary Thyroid Carcinomas: A Multicenter, Retrospective Study.

Acad Radiol. 2025-3

[9]
Machine learning-based radiomics for differentiating lung cancer subtypes in brain metastases using CE-T1WI.

Front Oncol. 2025-6-19

[10]
Multimodal nomogram integrating deep learning radiomics and hemodynamic parameters for early prediction of post-craniotomy intracranial hypertension.

Sci Rep. 2025-7-2

本文引用的文献

[1]
Predictors of renal outcomes and mortality in patients with renal vein thrombosis: a retrospective multicenter study.

J Nephrol. 2025-3

[2]
Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma.

Comput Biol Med. 2024-5

[3]
Thromboembolic phenomena in patients with nephrotic syndrome: pathophysiology, risk factors, prophylaxis and treatment.

Br J Hosp Med (Lond). 2024-1-2

[4]
Radiomics and artificial intelligence for precision medicine in lung cancer treatment.

Semin Cancer Biol. 2023-8

[5]
Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling.

Mil Med Res. 2023-5-16

[6]
A patient with spontaneous bilateral renal vein thrombosis but no risk factors.

Int J Surg Case Rep. 2023-3

[7]
Quantitative Analysis of Liver Disease Using MRI-Based Radiomic Features of the Liver and Spleen.

J Imaging. 2022-10-9

[8]
ACVR and ECVDI consensus statement for the standardization of the abdominal ultrasound examination.

Vet Radiol Ultrasound. 2022-11

[9]
Microvascular Flow Imaging: A State-of-the-Art Review of Clinical Use and Promise.

Radiology. 2022-11

[10]
Combining multiparametric MRI features-based transfer learning and clinical parameters: application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas.

Eur Radiol. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索