Suppr超能文献

使用混合深度学习模型对混凝土柱蜂窝缺陷进行实时检测与定位

Real-time detection and localization of honeycomb defects in concrete pillars using hybrid deep learning models.

作者信息

Das Sourav Kumar, Yogi Biswarup, Majumdar Raj, Ghosh Pritha, Roy Satyabrata

机构信息

Department of Civil Engineering, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.

Department of Computational Sciences, Brainware University, Kolkata, Barasat, 700125, West Bengal, India.

出版信息

Sci Rep. 2025 Jul 2;15(1):22536. doi: 10.1038/s41598-025-06971-1.

Abstract

This paper presents a hybrid model based on deep learning for the detection and instance segmentation of defects in honeycombs of concrete structures with YOLOv5 and Mask R-CNN. The approach combines the fast object detection feature of YOLOv5 with the precise instance segmentation feature of Mask R-CNN to effectively resolve and localize defect areas in structural images. A silicon dataset containing 1991 annotated images was utilized to train the model and evaluate. The system contains upgraded preprocessing, normalization, and Non-Maximum Suppression (NMS) to confirm robust and best performance. The model attained 98.26% training accuracy and 97.80% validation accuracy. Experimental results show very high efficacy over various measures, such as a Dice Similarity Coefficient of 0.9210, Matthews Correlation Coefficient of 0.9620, mean Average Precision (mAP) of 0.9752, F1-score of 0.9835, Precision of 0.9843, Recall of 0.9812, PR-AUC of 0.9752, IoU score of 0.9515, and Calibration Curve Error of 0.1800. The proposed method provides high accuracy, superior generalization, and robust segmentation performance, thus, it is highly suitable for real structural flaw inspection in construction and civil infrastructure health monitoring.

摘要

本文提出了一种基于深度学习的混合模型,用于使用YOLOv5和Mask R-CNN对混凝土结构蜂窝缺陷进行检测和实例分割。该方法将YOLOv5的快速目标检测功能与Mask R-CNN的精确实例分割功能相结合,以有效解析和定位结构图像中的缺陷区域。利用一个包含1991张带注释图像的硅数据集来训练和评估该模型。该系统包含升级的预处理、归一化和非极大值抑制(NMS),以确保稳健和最佳性能。该模型的训练准确率达到98.26%,验证准确率达到97.80%。实验结果表明,在各种指标上具有很高的有效性,如骰子相似系数为0.9210、马修斯相关系数为0.9620、平均精度均值(mAP)为0.9752、F1分数为0.9835、精确率为0.9843、召回率为0.9812、PR-AUC为0.9752、交并比分数为0.9515以及校准曲线误差为0.1800。所提出的方法提供了高精度、卓越的泛化能力和稳健的分割性能,因此,它非常适合建筑中的实际结构缺陷检测和土木基础设施健康监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1751/12214667/25a2004839a6/41598_2025_6971_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验