Bamwenda Julius, Özerdem Mehmet Siraç, Ayyıldız Orhan, Akpolat Veysı
Engineering Faculty, Electrical & Electronics Engineering Department, Dicle University, 21280 Diyarbakır, Türkiye.
Medical Faculty, Department of Internal Medicine-Hematology, Dicle University, 21280 Diyarbakır, Türkiye.
Bioengineering (Basel). 2025 Jun 19;12(6):674. doi: 10.3390/bioengineering12060674.
Accurate segmentation of cellular structures in whole slide images (WSIs) is essential for quantitative analysis in computational pathology. However, the complexity and scale of WSIs present significant challenges for conventional segmentation methods. In this study, we propose a novel hybrid deep learning framework that integrates three complementary approaches, YOLOv11, StarDist, and Segment Anything Model v2 (SAM2), to achieve robust and precise cell segmentation. The proposed pipeline utilizes YOLOv11 as an object detector to localize regions of interest, generating bounding boxes or preliminary masks that are subsequently used either as prompts to guide SAM2 or to filter segmentation outputs. StarDist is employed to model cell and nuclear boundaries with high geometric precision using star-convex polygon representations, which are particularly effective in densely packed cellular regions. The framework was evaluated on a unique WSI dataset comprising 256 × 256 image tiles annotated with high-resolution cell-level masks. Quantitative evaluations using the Dice coefficient, intersection over union (IoU), F1-score, precision, and recall demonstrated that the proposed method significantly outperformed individual baseline models. The integration of object detection and prompt-based segmentation led to enhanced boundary accuracy, improved localization, and greater robustness across varied tissue types. This work contributes a scalable and modular solution for advancing automated histopathological image analysis.
在全切片图像(WSIs)中对细胞结构进行准确分割对于计算病理学中的定量分析至关重要。然而,WSIs的复杂性和规模给传统分割方法带来了重大挑战。在本研究中,我们提出了一种新颖的混合深度学习框架,该框架集成了三种互补方法,即YOLOv11、StarDist和Segment Anything Model v2(SAM2),以实现强大而精确的细胞分割。所提出的管道利用YOLOv11作为目标检测器来定位感兴趣区域,生成边界框或初步掩码,这些边界框或初步掩码随后用作提示来指导SAM2或过滤分割输出。StarDist用于使用星凸多边形表示以高几何精度对细胞和细胞核边界进行建模,这在密集堆积的细胞区域中特别有效。该框架在一个独特的WSI数据集上进行了评估,该数据集由256×256图像块组成,并带有高分辨率的细胞级掩码注释。使用Dice系数、交并比(IoU)、F1分数、精度和召回率进行的定量评估表明,所提出的方法明显优于单个基线模型。目标检测和基于提示的分割的集成提高了边界准确性、改进了定位,并在各种组织类型中具有更高的鲁棒性。这项工作为推进自动化组织病理学图像分析提供了一种可扩展的模块化解决方案。