Suppr超能文献

基于数据驱动的黏土为主导的土壤中钢筋混凝土结构腐蚀评估

Data-driven assessment of corrosion in reinforced concrete structures embedded in clay dominated soils.

作者信息

Ahmad Shahbaz, Ahmad Siraj, Akhtar Sabih, Ahmad Faraz, Ansari Mujib Ahmad

机构信息

Geomechanics & Geotechnics, University of Kiel, Kiel, Germany.

Kiewit Inc., Denver, USA.

出版信息

Sci Rep. 2025 Jul 2;15(1):22744. doi: 10.1038/s41598-025-08526-w.

Abstract

The integration of Artificial Intelligence techniques, particularly Artificial Neural Networks (ANNs), has transformed predictive modeling in structural and durability engineering. This study investigates the use of ANN-based approaches to predict the corrosion rates of mild steel reinforcement embedded in cementitious composites subjected to clay-dominated soil environments. Key environmental parameters, sodium chloride (NaCl) content (0-4%), inhibitor dosage (DOI) (0-5%), and exposure duration (30-180 days), were selected as input variables. Two ANN architectures, Feedforward Backpropagation (FFBP) and Cascadeforward Backpropagation (CFBP), were developed and trained using 72 experimental data points extracted from the literature. The FFBP model outperformed CFBP in terms of predictive accuracy, achieving a correlation coefficient (R) of 0.998, a mean absolute percentage error (MAPE) of 30.43%, and a root mean square error (RMSE) of 0.071 during testing. Sensitivity analysis revealed that inhibitor dosage had the most significant influence on corrosion behavior, followed by NaCl concentration and exposure duration. The findings confirm that ANN models can effectively capture the nonlinear interactions governing corrosion progression, even under complex environmental conditions associated with clayey soils. This research provides a reliable and practical AI-driven framework for assessing corrosion risk, guiding material design, and enhancing long-term infrastructure durability in aggressive subsurface conditions. The study underscores the growing relevance of machine learning in simulating time-dependent deterioration processes in geotechnical and structural materials.

摘要

人工智能技术,特别是人工神经网络(ANNs)的整合,已经改变了结构和耐久性工程中的预测建模。本研究调查了基于人工神经网络的方法在预测埋入以粘土为主的土壤环境中的水泥基复合材料中低碳钢钢筋腐蚀速率方面的应用。选择关键环境参数,氯化钠(NaCl)含量(0 - 4%)、抑制剂用量(DOI)(0 - 5%)和暴露持续时间(30 - 180天)作为输入变量。使用从文献中提取的72个实验数据点开发并训练了两种人工神经网络架构,前馈反向传播(FFBP)和级联前向反向传播(CFBP)。在预测准确性方面,FFBP模型优于CFBP,在测试期间实现了相关系数(R)为0.998、平均绝对百分比误差(MAPE)为30.43%和均方根误差(RMSE)为0.071。敏感性分析表明,抑制剂用量对腐蚀行为影响最大,其次是NaCl浓度和暴露持续时间。研究结果证实,即使在与粘性土壤相关的复杂环境条件下,人工神经网络模型也能有效捕捉控制腐蚀进程的非线性相互作用。本研究为评估腐蚀风险、指导材料设计以及提高在侵蚀性地下条件下的长期基础设施耐久性提供了一个可靠且实用的人工智能驱动框架。该研究强调了机器学习在模拟岩土和结构材料中随时间变化的劣化过程方面日益重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93e0/12216840/03bdeb12752c/41598_2025_8526_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验