Suppr超能文献

一种使用综合数据集预测混凝土抗氯化物性能的高效机器学习方法。

An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset.

作者信息

Hosseinzadeh Maedeh, Mousavi Seyed Sina, Hosseinzadeh Alireza, Dehestani Mehdi

机构信息

Faculty of Civil Engineering, Babol Noshirvani University of Technology, 484, Babol, 47148-71167, Iran.

出版信息

Sci Rep. 2023 Sep 12;13(1):15024. doi: 10.1038/s41598-023-42270-3.

Abstract

By conducting an analysis of chloride migration in concrete, it is possible to enhance the durability of concrete structures and mitigate the risk of corrosion. In addition, the utilization of machine learning techniques that can effectively forecast the chloride migration coefficient of concrete shows potential as a financially viable and less complex substitute for labour-intensive experimental evaluations. The existing models for predicting chloride resistance encounter two primary challenges: the constraints imposed by a limited dataset and the absence of certain input variables. These factors collectively contribute to a decrease in the overall effectiveness of these models. Therefore, this study aims to propose an advanced approach for dataset cleaning, utilizing a comprehensive experimental dataset comprising 1073 pre-existing experimental outcomes. The proposed model for predicting the chloride diffusion coefficient incorporates various input variables, such as water content, cement content, slag content, fly ash content, silica fume content, fine aggregate content, coarse aggregate content, superplasticizer content, fresh density, compressive strength, age of compressive strength test, and age of migration test. The utilization of the artificial neural network (ANN) technique is also employed for the processing of missing data. The current supervised learning incorporates both regression and classification tasks. The efficacy of the proposed models for accurately predicting the chloride diffusion coefficient has been effectively validated. The findings indicate that the XGBoost and SVM algorithms exhibit superior performance compared to other regression prediction algorithms, as evidenced by their high R2 scores of 0.94 and 0.91, respectively. In relation to classification algorithms, the findings demonstrate that the Random Forest, LightGBM, and XGBoost models exhibit the highest levels of accuracy, specifically 0.93, 0.96, and 0.97, respectively. Furthermore, a website has been developed that is capable of predicting the chloride migration coefficient and chloride penetration resistance of concrete.

摘要

通过对混凝土中氯离子迁移进行分析,可提高混凝土结构的耐久性并降低腐蚀风险。此外,利用机器学习技术有效预测混凝土氯离子迁移系数,作为一种经济可行且不太复杂的替代方法,有望取代劳动密集型的实验评估。现有的抗氯离子预测模型面临两个主要挑战:数据集有限带来的限制以及某些输入变量的缺失。这些因素共同导致这些模型的整体有效性下降。因此,本研究旨在提出一种先进的数据集清理方法,利用包含1073个已有实验结果的综合实验数据集。所提出的预测氯离子扩散系数的模型纳入了各种输入变量,如水含量、水泥含量、矿渣含量、粉煤灰含量、硅灰含量、细骨料含量、粗骨料含量、高效减水剂含量、新拌密度、抗压强度、抗压强度试验龄期和迁移试验龄期。还采用人工神经网络(ANN)技术处理缺失数据。当前的监督学习包含回归和分类任务。所提出模型准确预测氯离子扩散系数的有效性已得到有效验证。结果表明,XGBoost和SVM算法与其他回归预测算法相比表现出卓越性能,其R2分数分别高达0.94和0.91。关于分类算法,结果表明随机森林、LightGBM和XGBoost模型表现出最高的准确率,分别为0.93、0.96和0.97。此外,还开发了一个能够预测混凝土氯离子迁移系数和抗氯离子渗透性的网站。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d4d/10497559/87bd6f05d234/41598_2023_42270_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验