Thorpe Connor, Luo Weifeng, Ji Qing, Eggenberger Alan L, Chicowski Aline S, Xu Weihui, Sandhu Ritinder, Lee Keunsub, Whitham Steven A, Qi Yiping, Wang Kan, Jiang Shan
Department of Materials Science and Engineering, Iowa State University, Ames, IA, USA.
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
Nat Commun. 2025 Jul 1;16(1):5624. doi: 10.1038/s41467-025-60761-x.
The biolistic delivery system is an essential tool in plant genetic engineering, capable of delivering DNAs, RNAs, and proteins independent of tissue type, genotype, or species. However, its efficiency and consistency remain longstanding challenges despite decades of widespread use. Here, through advanced simulations, we identify gas and particle flow barriers as the root cause of these limitations. We show that a flow guiding barrel (FGB) achieves a 22-fold enhancement in transient transfection efficiency, a 4.5-fold increase in CRISPR-Cas9 ribonucleoprotein editing efficiency in onion epidermis, and a 17-fold improvement in viral infection efficiency in maize seedlings. Furthermore, stable transformation frequency in maize using B104 immature embryos increases over 10-fold, while in planta CRISPR-Cas12a-mediated genome editing efficiency in wheat meristems doubles in both T0 and T1 generations. This study provides insights into the fundamental mechanisms underlying biolistic inefficiency and demonstrates a practical solution that enables broader and more reliable applications in plant genetic engineering.
生物弹道传递系统是植物基因工程中的一项重要工具,能够独立于组织类型、基因型或物种传递DNA、RNA和蛋白质。然而,尽管已广泛使用数十年,其效率和一致性仍然是长期存在的挑战。在此,通过先进的模拟,我们确定气体和颗粒流动障碍是这些限制的根本原因。我们表明,导流筒(FGB)可使瞬时转染效率提高22倍,洋葱表皮中CRISPR-Cas9核糖核蛋白编辑效率提高4.5倍,玉米幼苗中病毒感染效率提高17倍。此外,使用B104未成熟胚的玉米稳定转化频率提高了10倍以上,而在小麦分生组织中,植物体内CRISPR-Cas12a介导的基因组编辑效率在T0和T1代均提高了一倍。本研究深入探讨了生物弹道传递效率低下的基本机制,并展示了一种切实可行的解决方案,可在植物基因工程中实现更广泛、更可靠的应用。