Suppr超能文献

氮化硅作为缺陷诱导物理促进剂增强机械化学氨合成

Mechanochemical ammonia synthesis enhanced by silicon nitride as a defect-inducing physical promoter.

作者信息

Lee Jae Seong, Kim Sooyeon, Kim Seung-Hyeon, Baek Jae-Hoon, Seo Jeong-Min, Lee Se Jung, Li Changqing, Guan Runnan, Jang Boo-Jae, Han Gao-Feng, Han Sang Soo, Baek Jong-Beom

机构信息

School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.

Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.

出版信息

Nat Commun. 2025 Jul 1;16(1):5703. doi: 10.1038/s41467-025-60715-3.

Abstract

By enabling ammonia synthesis under near ambient conditions, mechanochemistry provides a paradigm shift, a new decentralized production method that avoids the high temperature (above 400 °C) and high pressure (above 200 bar) requirements of the centralized Haber-Bosch process. Leveraging the principles of mechanochemistry and its dynamic reaction environment, we hypothesize that inducing high-density defects on iron (Fe) catalyst can amplify catalytic activity by increasing initial state and adsorption capacity. In this study, we introduce a novel mechanochemical ammonia synthesis method utilizing silicon nitride (SiN) as a defect-inducing physical promoter. The physical properties of SiN make it an ideal candidate to more efficiently generate active surfaces on Fe catalyst via mechanochemical actions. The Fe catalyst with SiN (3.0 at%) promoter achieves an ammonia concentration 5.6-fold higher than unpromoted Fe, while maintaining substantial stability. This research not only establishes a promising pathway for low-energy ammonia production but also provides insights into dynamic defect engineering strategies for catalytic systems.

摘要

通过在接近环境条件下实现氨合成,机械化学提供了一种范式转变,这是一种新的分散式生产方法,避免了集中式哈伯-博施法所需的高温(高于400°C)和高压(高于200巴)。利用机械化学原理及其动态反应环境,我们假设在铁(Fe)催化剂上诱导高密度缺陷可以通过增加初始状态和吸附能力来放大催化活性。在本研究中,我们引入了一种利用氮化硅(SiN)作为缺陷诱导物理促进剂的新型机械化学氨合成方法。SiN的物理性质使其成为通过机械化学作用在Fe催化剂上更有效地生成活性表面的理想候选物。具有SiN(3.0原子%)促进剂的Fe催化剂实现的氨浓度比未促进的Fe高5.6倍,同时保持了相当的稳定性。这项研究不仅为低能耗氨生产建立了一条有前景的途径,还为催化系统的动态缺陷工程策略提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f5d/12217850/6d09ad49af43/41467_2025_60715_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验