Suppr超能文献

通过人工智能驱动的框架提升高等技术教育中的跨文化能力。

Enhancing intercultural competence in technical higher education through AI-driven frameworks.

作者信息

Zhang Qi, Mohammad Ismail Mohammad Ismath Ramzy, Zakaria Abd Razak Bin

机构信息

Department of Educational Foundations and Humanities, Faulty of Education, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

出版信息

Sci Rep. 2025 Jul 1;15(1):22019. doi: 10.1038/s41598-025-03303-1.

Abstract

The assessment of Intercultural Competence (IC) is increasingly recognized as an essential component of students' professional competency development in higher education settings. This study looks at the objectives of creating ICC and offers an assessment framework that adheres to the competency cultivation principles and the IC acquisition model. However, because intercultural communicative competence is not given enough attention, there are still problems with teaching abroad. This study utilizes the AI approaches for assessing the ICC in higher education. The Apriori algorithm analyses the association among the instructional tasks and ICC learning outcomes to find the teaching strategies most effectively build the cultural knowledge. Fuzzy logic is utilized to convert the qualitative perceptions to quantifiable data to address the subjective assessment, Sim Rank evaluate the student performance similarity and behavior to find the clusters and MK means used to segment the students based on ICC profiles for targeted interventions. The concepts and methods of model construction were applied in the development of a fuzzy thorough assessment model for college students' ICC. The findings show a substantial relationship between the total IC level and the four IC components of attitude, knowledge, Skill and consciousness. According to correlation strength, these characteristics are rated as follows: attitude (0.835), skill A (0.885), Skill B (0.823), Consciousness (0.714) and knowledge (0.972). Furthermore, there is a positive association between cross-cultural factors and the five aspects of English language ability, indicating a reciprocal relationship between developing IC and learning English.

摘要

跨文化能力(IC)评估日益被视为高等教育环境中学生专业能力发展的重要组成部分。本研究着眼于创建跨文化能力(ICC)的目标,并提供了一个遵循能力培养原则和IC获取模型的评估框架。然而,由于跨文化交际能力未得到足够重视,海外教学仍存在问题。本研究利用人工智能方法评估高等教育中的ICC。Apriori算法分析教学任务与ICC学习成果之间的关联,以找出最有效地构建文化知识的教学策略。利用模糊逻辑将定性认知转化为可量化数据,以解决主观评估问题,Sim Rank评估学生表现的相似性和行为以找出聚类,MK均值用于根据ICC概况对学生进行分类以进行有针对性的干预。模型构建的概念和方法应用于大学生ICC模糊综合评估模型的开发。研究结果表明,IC总水平与态度、知识、技能和意识这四个IC组成部分之间存在显著关系。根据相关强度,这些特征的排名如下:态度(0.835)、技能A(0.885)、技能B(0.823)、意识(0.714)和知识(0.972)。此外,跨文化因素与英语语言能力的五个方面之间存在正相关,表明IC发展与英语学习之间存在相互关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验