Suppr超能文献

用于磁共振成像语义分割的多方案跨层注意力嵌入U型变换器

Multi-scheme cross-level attention embedded U-shape transformer for MRI semantic segmentation.

作者信息

Wang Qiang, Xue Yongchong

机构信息

UAV Industry Academy, Chengdu Aeronautic Polytechnic, Chengdu, 610100, China.

Department of Electrics and Information Engineering, Beihang University, Beijing, 100191, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):22891. doi: 10.1038/s41598-025-06966-y.

Abstract

Accurate MRI image segmentation is crucial for disease diagnosis, but current Transformer-based methods face two key challenges: limited capability to capture detailed information, leading to blurred boundaries and false localization, and the lack of MRI-specific embedding paradigms for attention modules, which limits their potential and representation capability. To address these challenges, this paper proposes a multi-scheme cross-level attention embedded U-shape Transformer (MSCL-SwinUNet). This model integrates cross-level spatial-wise attention (SW-Attention) to transfer detailed information from encoder to decoder, cross-stage channel-wise attention (CW-Attention) to filter out redundant features and enhance task-related channels, and multi-stage scale-wise attention (ScaleW-Attention) to adaptively process multi-scale features. Extensive experiments on the ACDC, MM-WHS and Synapse datasets demonstrate that the proposed MSCL-SwinUNet surpasses state-of-the-art methods in accuracy and generalizability. Visualization further confirms the superiority of our model in preserving detailed boundaries. This work not only advances Transformer-based segmentation in medical imaging but also provides new insights into designing MRI-specific attention embedding paradigms.Our code is available at https://github.com/waylans/MSCL-SwinUNet .

摘要

准确的磁共振成像(MRI)图像分割对于疾病诊断至关重要,但当前基于Transformer的方法面临两个关键挑战:捕捉详细信息的能力有限,导致边界模糊和定位错误;以及注意力模块缺乏针对MRI的嵌入范式,这限制了它们的潜力和表征能力。为应对这些挑战,本文提出了一种多方案跨层注意力嵌入U型Transformer(MSCL-SwinUNet)。该模型集成了跨层空间注意力(SW-Attention)以将详细信息从编码器传递到解码器,跨阶段通道注意力(CW-Attention)以滤除冗余特征并增强与任务相关的通道,以及多阶段尺度注意力(ScaleW-Attention)以自适应处理多尺度特征。在ACDC、MM-WHS和Synapse数据集上进行的大量实验表明,所提出的MSCL-SwinUNet在准确性和通用性方面超越了现有方法。可视化进一步证实了我们的模型在保留详细边界方面的优越性。这项工作不仅推动了基于Transformer的医学图像分割技术发展,还为设计针对MRI的注意力嵌入范式提供了新见解。我们的代码可在https://github.com/waylans/MSCL-SwinUNet获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/470d/12215565/d6fef08b94bf/41598_2025_6966_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验