Wang Qiang, Xue Yongchong
UAV Industry Academy, Chengdu Aeronautic Polytechnic, Chengdu, 610100, China.
Department of Electrics and Information Engineering, Beihang University, Beijing, 100191, China.
Sci Rep. 2025 Jul 2;15(1):22891. doi: 10.1038/s41598-025-06966-y.
Accurate MRI image segmentation is crucial for disease diagnosis, but current Transformer-based methods face two key challenges: limited capability to capture detailed information, leading to blurred boundaries and false localization, and the lack of MRI-specific embedding paradigms for attention modules, which limits their potential and representation capability. To address these challenges, this paper proposes a multi-scheme cross-level attention embedded U-shape Transformer (MSCL-SwinUNet). This model integrates cross-level spatial-wise attention (SW-Attention) to transfer detailed information from encoder to decoder, cross-stage channel-wise attention (CW-Attention) to filter out redundant features and enhance task-related channels, and multi-stage scale-wise attention (ScaleW-Attention) to adaptively process multi-scale features. Extensive experiments on the ACDC, MM-WHS and Synapse datasets demonstrate that the proposed MSCL-SwinUNet surpasses state-of-the-art methods in accuracy and generalizability. Visualization further confirms the superiority of our model in preserving detailed boundaries. This work not only advances Transformer-based segmentation in medical imaging but also provides new insights into designing MRI-specific attention embedding paradigms.Our code is available at https://github.com/waylans/MSCL-SwinUNet .
准确的磁共振成像(MRI)图像分割对于疾病诊断至关重要,但当前基于Transformer的方法面临两个关键挑战:捕捉详细信息的能力有限,导致边界模糊和定位错误;以及注意力模块缺乏针对MRI的嵌入范式,这限制了它们的潜力和表征能力。为应对这些挑战,本文提出了一种多方案跨层注意力嵌入U型Transformer(MSCL-SwinUNet)。该模型集成了跨层空间注意力(SW-Attention)以将详细信息从编码器传递到解码器,跨阶段通道注意力(CW-Attention)以滤除冗余特征并增强与任务相关的通道,以及多阶段尺度注意力(ScaleW-Attention)以自适应处理多尺度特征。在ACDC、MM-WHS和Synapse数据集上进行的大量实验表明,所提出的MSCL-SwinUNet在准确性和通用性方面超越了现有方法。可视化进一步证实了我们的模型在保留详细边界方面的优越性。这项工作不仅推动了基于Transformer的医学图像分割技术发展,还为设计针对MRI的注意力嵌入范式提供了新见解。我们的代码可在https://github.com/waylans/MSCL-SwinUNet获取。