Suppr超能文献

水稻害虫识别中注意力机制的比较分析

Comparative analysis of attentional mechanisms in rice pest identification.

作者信息

Xiao Yongjun, Zhang Xiangruo, Chen Ziao, Tan Jingxuan, Zhou Linyu, Jiang Chunxian, Xu Lijia, Li Zhiyong

机构信息

College of Information Engineering, Sichuan Agricultural University, Ya'an, 625000, China.

College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625000, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):21397. doi: 10.1038/s41598-025-08869-4.

Abstract

Accurate detection of rice pests helps farmers take timely control measures. This study compares different attention mechanisms for rice pest detection in complex backgrounds and demonstrates that a human vision-inspired Bionic Attention (BA) mechanism outperforms most traditional attention mechanisms in this task and is applicable to all major mainstream and novel models. Bionic Attention (BA) assists the main branch in recognition by additionally labeling important features of each rice pest category and inputting the additional category labels as bionic information into the network during the input stage. This study applies Bionic Attention to dominant entity classical and novel networks, including YOLOv5s, YOLOv8n, SSD, Faster R-CNN, YOLOv9-e, and YOLOv10-X, and compares it with classical attention mechanisms such as CBAM, SE, and SimAM to verify its feasibility. Meanwhile, this study introduces more detailed evaluation metrics to assess Bionic Attention, including Classification Error, Localization Error, Cls and Loc Error, Duplicate Detection Error, Background Error, and Missed GT Error. Experimental results show that Bionic Attention improves detection performance by indirectly enhancing the loss function, allowing the model to acquire more fine-grained information during the feature extraction stage, thereby improving detection accuracy.

摘要

准确检测水稻害虫有助于农民及时采取防治措施。本研究比较了复杂背景下水稻害虫检测的不同注意力机制,并证明了受人类视觉启发的仿生注意力(BA)机制在该任务中优于大多数传统注意力机制,且适用于所有主要的主流和新型模型。仿生注意力(BA)通过在输入阶段额外标记每个水稻害虫类别的重要特征,并将额外的类别标签作为仿生信息输入网络,来辅助主分支进行识别。本研究将仿生注意力应用于主导实体经典和新型网络,包括YOLOv5s、YOLOv8n、SSD、Faster R-CNN、YOLOv9-e和YOLOv10-X,并将其与CBAM、SE和SimAM等经典注意力机制进行比较,以验证其可行性。同时,本研究引入了更详细的评估指标来评估仿生注意力,包括分类误差、定位误差、分类和定位误差、重复检测误差、背景误差和漏检GT误差。实验结果表明,仿生注意力通过间接增强损失函数来提高检测性能,使模型在特征提取阶段能够获取更多细粒度信息,从而提高检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4cd/12217306/2073923d454e/41598_2025_8869_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验