Mahdi Wael A, Alhowyan Adel, Obaidullah Ahmad J
Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
Sci Rep. 2025 Jul 1;15(1):21852. doi: 10.1038/s41598-025-07366-y.
This study employs density functional theory (DFT) and molecular dynamics (MD) simulations to investigate silicon carbide (SiC) nanocrystals as carriers for the anticancer drug Belzutifan. Among tested functional groups (-H, -OH, -NH₂, -COOH), carboxyl-functionalized SiC (SiC-COOH) exhibits superior drug loading capacity with an adsorption energy of -1.03 eV, representing a 25% improvement over conventional carbon-based carriers. The SiC-COOH system demonstrates exceptional stability with a formation energy of -5.42 eV/atom and a remarkably high dipole moment of 142.1 D, facilitating enhanced solubility. Electronic structure analysis reveals significant charge transfers (-0.25e) from Belzutifan to the nanocrystal, accompanied by a substantial reduction in the HOMO-LUMO gap from 5.427 eV (pristine SiC) to 3.41 eV (Belzutifan@SiC-COOH complex), indicating improved electronic coupling. MD simulations confirm the complex's stability under physiological conditions, maintaining structural integrity with root-mean-square deviation (RMSD) values below 2.5 Å throughout the 5 ps simulation. Characteristic shifts in optical spectra (200-600 nm range) and IR vibrational modes (15-40 cm⁻¹) provide clear spectroscopic signatures of successful drug adsorption. The combination of strong binding (-1.03 eV adsorption energy), maintained biocompatibility, and tunable electronic properties positions functionalized SiC nanocrystals as a promising platform for targeted Belzutifan delivery, with potential applications in photo-triggered release systems.
本研究采用密度泛函理论(DFT)和分子动力学(MD)模拟,研究碳化硅(SiC)纳米晶体作为抗癌药物贝利尤单抗载体的情况。在测试的官能团(-H、-OH、-NH₂、-COOH)中,羧基官能化的SiC(SiC-COOH)表现出优异的载药能力,吸附能为-1.03 eV,比传统碳基载体提高了25%。SiC-COOH体系表现出卓越的稳定性,形成能为-5.42 eV/原子,偶极矩高达142.1 D,有助于提高溶解度。电子结构分析表明,贝利尤单抗向纳米晶体发生了显著的电荷转移(-0.25e),同时最高占据分子轨道-最低未占据分子轨道(HOMO-LUMO)能隙从5.427 eV(原始SiC)大幅降低至3.41 eV(贝利尤单抗@SiC-COOH复合物),表明电子耦合得到改善。MD模拟证实了该复合物在生理条件下的稳定性,在整个5 ps模拟过程中均保持结构完整性,均方根偏差(RMSD)值低于2.5 Å。光谱(200-600 nm范围)和红外振动模式(15-40 cm⁻¹)的特征性变化为药物成功吸附提供了清晰的光谱特征。强结合(-1.03 eV吸附能)、维持的生物相容性和可调节的电子性质相结合,使官能化的SiC纳米晶体成为贝利尤单抗靶向递送的有前景平台,在光触发释放系统中具有潜在应用。