Jerković Ivan, Bašić Željana, Kružić Ivana
Faculty of Forensic Sciences, University of Split, Split, Croatia.
Sci Rep. 2025 Jul 2;15(1):22728. doi: 10.1038/s41598-025-07608-z.
This study investigates a deep learning approach for sex estimation using 3D hyoid bone models derived from computed tomography (CT) scans of a Croatian population. We analyzed 202 hyoid samples (101 male, 101 female), converting CT-derived meshes into 2048-point clouds for processing with an adapted PointNet++ network. The model, optimized for small datasets with 1D convolutional layers and global size features, was first applied in an unsupervised framework. Unsupervised clustering achieved 87.10% accuracy, identifying natural sex-based morphological patterns. Subsequently, supervised classification with a support vector machine yielded an accuracy of 88.71% (Matthews Correlation Coefficient, MCC = 0.7746) on a test set (n = 62). Interpretability analysis highlighted key regions influencing classification, with males exhibiting larger, U-shaped hyoids and females showing smaller, more open structures. Despite the modest sample size, the method effectively captured sex differences, providing a data-efficient and interpretable tool. This flexible approach, combining computational efficiency with practical insights, demonstrates potential for aiding sex estimation in cases with limited skeletal remains and may support broader applications in forensic anthropology.
本研究探讨了一种深度学习方法,用于使用从克罗地亚人群的计算机断层扫描(CT)扫描中获得的3D舌骨模型进行性别估计。我们分析了202个舌骨样本(101个男性,101个女性),将CT衍生的网格转换为2048个点云,以便使用经过改编的PointNet++网络进行处理。该模型针对具有一维卷积层和全局大小特征的小数据集进行了优化,首先应用于无监督框架。无监督聚类的准确率达到87.10%,识别出基于性别的自然形态模式。随后,在测试集(n = 62)上使用支持向量机进行监督分类,准确率达到88.71%(马修斯相关系数,MCC = 0.7746)。可解释性分析突出了影响分类的关键区域,男性表现出更大的U形舌骨,女性则表现出更小、更开放的结构。尽管样本量不大,但该方法有效地捕捉了性别差异,提供了一种数据高效且可解释的工具。这种灵活的方法将计算效率与实际见解相结合,展示了在骨骼遗骸有限的情况下辅助性别估计的潜力,并可能支持在法医人类学中的更广泛应用。