Suppr超能文献

基于深度神经网络的 3D 颅骨图像性别分类

Sex classification of 3D skull images using deep neural networks.

机构信息

Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, CA, USA.

Department of Surgery, Cedars Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Sci Rep. 2024 Jun 14;14(1):13707. doi: 10.1038/s41598-024-61879-6.

Abstract

Determining the fundamental characteristics that define a face as "feminine" or "masculine" has long fascinated anatomists and plastic surgeons, particularly those involved in aesthetic and gender-affirming surgery. Previous studies in this area have relied on manual measurements, comparative anatomy, and heuristic landmark-based feature extraction. In this study, we collected retrospectively at Cedars Sinai Medical Center (CSMC) a dataset of 98 skull samples, which is the first dataset of this kind of 3D medical imaging. We then evaluated the accuracy of multiple deep learning neural network architectures on sex classification with this dataset. Specifically, we evaluated methods representing three different 3D data modeling approaches: Resnet3D, PointNet++, and MeshNet. Despite the limited number of imaging samples, our testing results show that all three approaches achieve AUC scores above 0.9 after convergence. PointNet++ exhibits the highest accuracy, while MeshNet has the lowest. Our findings suggest that accuracy is not solely dependent on the sparsity of data representation but also on the architecture design, with MeshNet's lower accuracy likely due to the lack of a hierarchical structure for progressive data abstraction. Furthermore, we studied a problem related to sex determination, which is the analysis of the various morphological features that affect sex classification. We proposed and developed a new method based on morphological gradients to visualize features that influence model decision making. The method based on morphological gradients is an alternative to the standard saliency map, and the new method provides better visualization of feature importance. Our study is the first to develop and evaluate deep learning models for analyzing 3D facial skull images to identify imaging feature differences between individuals assigned male or female at birth. These findings may be useful for planning and evaluating craniofacial surgery, particularly gender-affirming procedures, such as facial feminization surgery.

摘要

确定定义面部为“女性化”或“男性化”的基本特征一直令解剖学家和整形医生着迷,尤其是那些从事美学和性别肯定手术的医生。该领域的先前研究依赖于手动测量、比较解剖学和启发式基于地标特征提取。在这项研究中,我们在西达赛奈医疗中心(CSMC)回顾性地收集了 98 个头骨样本数据集,这是第一个此类 3D 医学成像数据集。然后,我们使用该数据集评估了多个深度学习神经网络架构在性别分类中的准确性。具体来说,我们评估了代表三种不同 3D 数据建模方法的方法:Resnet3D、PointNet++ 和 MeshNet。尽管成像样本数量有限,但我们的测试结果表明,在收敛后,所有三种方法的 AUC 得分均高于 0.9。PointNet++ 表现出最高的准确性,而 MeshNet 的准确性最低。我们的发现表明,准确性不仅取决于数据表示的稀疏性,还取决于架构设计,MeshNet 的准确性较低可能是由于缺乏用于逐步数据抽象的层次结构。此外,我们研究了一个与性别确定相关的问题,即分析影响性别分类的各种形态特征。我们提出并开发了一种基于形态梯度的新方法,用于可视化影响模型决策的特征。基于形态梯度的方法是标准显着性映射的替代方法,新方法提供了特征重要性的更好可视化。我们的研究是第一个开发和评估用于分析 3D 面部颅骨图像以识别出生时被分配为男性或女性的个体之间的成像特征差异的深度学习模型。这些发现可能有助于规划和评估颅面手术,特别是性别肯定手术,如面部女性化手术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0937/11178899/7cf29ec5721d/41598_2024_61879_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验