Jiang Siqi, Du Renjun, Jiang Jiawei, Liu Gan, Huang Jiabei, Du Yu, Han Yaqing, Xiao Jingkuan, Zhang Di, Lian Fuzhuo, Xu Wanting, Wang Siqin, Qiao Lei, Watanabe Kenji, Taniguchi Takashi, Xi Xiaoxiang, Ren Wei, Wang Baigeng, Mayorov Alexander S, Chang Kai, Yang Hongxin, Wang Lei, Yu Geliang
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.
Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou, China.
Nat Commun. 2025 Jul 1;16(1):5640. doi: 10.1038/s41467-025-60783-5.
The coupling of ferroelectricity and magnetic order provides rich tunability for engineering material properties and demonstrates great potential for uncovering novel quantum phenomena and multifunctional devices. Here, we report interfacial ferroelectricity in moiré superlattices constructed from graphene and hexagonal boron nitride. We observe ferroelectric polarization in an across-layer moiré superlattice with an intercalated layer, demonstrating a remnant polarization comparable to its non-intercalated counterpart. Remarkably, we reveal a magnetic-field enhancement of ferroelectric polarization that persists up to room temperature, showcasing an unconventional amplification of ferroelectricity in materials lacking magnetic elements. This phenomenon, consistent across devices with varying layer configurations, arises purely from electronic rather than ionic contributions. Furthermore, the ferroelectric polarization in turn modulates quantum transport characteristics, suppressing Shubnikov-de Haas oscillations and altering quantum Hall states in polarized phases. This interplay between ferroelectricity and magneto-transport in non-magnetic materials is crucial for exploring magnetoelectric effects and advancing two-dimensional memory and logic applications.
铁电性与磁序的耦合为工程材料特性提供了丰富的可调性,并在揭示新型量子现象和多功能器件方面展现出巨大潜力。在此,我们报道了由石墨烯和六方氮化硼构建的莫尔超晶格中的界面铁电性。我们在具有插入层的跨层莫尔超晶格中观察到铁电极化,其剩余极化与未插入层的对应物相当。值得注意的是,我们发现铁电极化的磁场增强在室温下仍然存在,这展示了在缺乏磁性元素的材料中铁电性的非常规增强。这种现象在具有不同层配置的器件中一致出现,纯粹源于电子而非离子贡献。此外,铁电极化反过来调制量子输运特性,抑制舒布尼科夫 - 德哈斯振荡并改变极化相中的量子霍尔态。非磁性材料中铁电性与磁输运之间的这种相互作用对于探索磁电效应以及推进二维存储和逻辑应用至关重要。