Suppr超能文献

基于新型动态网络DEA的中国能源经济效率评价

China's energy economic efficiency evaluation based on novel dynamic network DEA.

作者信息

Pan Wenchao, Lin Tsung-Xian, Long Huiqian, Zhang Renwen, Li Hui, Jin Huizhen

机构信息

School of Economics and Management, Hunan University of Science and Engineering, Yongzhou, China.

School of Management, Guangzhou Huashang College, Guangzhou, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):22406. doi: 10.1038/s41598-025-04201-2.

Abstract

In the constantly evolving and developing global economy today, energy is widely acknowledged as the major influential component in promoting economic growth. Therefore, the improvement of energy economic efficiency and the achievement of sustainable use of energy have become critically important for both China and the world. Hence, this paper adopts the novel dynamic network Data Envelopment Analysis (DEA) method to evaluate and study China's energy economic efficiency using panel data from 2015 to 2022. According to the findings of the study: (1) The total factor productivity of the energy economy in China's provinces broadly highlights an upward trend from 2015 to 2022; (2) The development of China's energy economic efficiency in 2015-2022 was positively influenced by the improvement of scale efficiency of S&T R&D progress in the first stage, but was hampered by the regression of scale efficiency of practical transformation of S&T achievements in the second stage and the decline of the technical progress index in each individual year; (3) The efficiency of China's energy scientific and technological R&D progress evidently demonstrates progressions. However, there is significant variation in the efficiency of this stage across different provinces and cities.

摘要

在当今不断演变和发展的全球经济中,能源被广泛认为是推动经济增长的主要影响因素。因此,提高能源经济效率和实现能源可持续利用对中国乃至世界都至关重要。为此,本文采用新颖的动态网络数据包络分析(DEA)方法,利用2015年至2022年的面板数据对中国能源经济效率进行评估和研究。根据研究结果:(1)2015年至2022年中国各省份能源经济全要素生产率总体呈上升趋势;(2)2015 - 2022年中国能源经济效率的发展在第一阶段受到科技研发进步规模效率提高的积极影响,但在第二阶段受到科技成果实际转化规模效率的回落以及各年份技术进步指数下降的阻碍;(3)中国能源科技研发进步效率明显呈现出进步态势。然而,这一阶段不同省市的效率存在显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6244/12218176/812d66d7cb94/41598_2025_4201_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验