Zhang Tianwei, Li Wei, Zhao Zengfeng, Bi Meizhen, Zheng Yi
Jintian Industrial Development (Shandong) Group Co., Ltd., Jinan, 250100, China.
College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
Sci Rep. 2025 Jul 1;15(1):21437. doi: 10.1038/s41598-025-05964-4.
As the foundational and core resource for agricultural development, arable land plays a critical role in optimizing regional agricultural resource allocation and ensuring food security. This study employs Morphological Spatial Pattern Analysis (MSPA) and the Landscape Pattern Index (LPI) to comprehensively analyze the erosion and fragmentation of arable land in Shandong Province from 1990 to 2023. Bivariate spatial autocorrelation (BSA), Pearson correlation coefficients and the Self-Organizing Map (SOM) algorithm are applied to examine the relationships among landscape pattern indices and spatial clustering patterns. Finally, the driving factors are explored using Multiscale Geographically Weighted Regression (MGWR). The results demonstrate the following: (1) The results indicate a rapid decline in core cultivated zones across central and southeastern coastal Shandong between 1990 and 2023. The proportion of primary core areas (Level 1) dropped sharply from 82.44 to 30.28% of total arable land, suggesting marked degradation of the agricultural landscape. (2) An assessment of landscape pattern metrics reveals increasing fragmentation of cultivated land. In contrast, the western regions have retained more intact agricultural landscapes, marked by a higher share of cultivated land, more cohesive patch patterns, and stronger spatial aggregation. (3) Bivariate spatial autocorrelation (mean Moran's I = 0.6516) and Pearson correlation (mean r = 0.9225) both point to a strong positive association between the Aggregation Index (AI) and the Percentage of Landscape (PLAND). Among the six cluster types, Clusters C, D, and F-characterized by large area shares, high aggregation, and strong connectivity-represent the most suitable regions for agriculture. Although the proportions of Clusters C and D declined (from 26.5 to 3.7% and 36.8 to 25.7%, respectively), farmland protection policies contributed to a notable rise in Cluster F, from 17.6 to 27.9% over the study period. (4) The influence of key drivers varies across different landscape metrics. Slope gradient shows the greatest explanatory power for the Perimeter-Area Fractal Dimension (PAFRAC), Patch Density (PD), and AI. Meanwhile, NDVI, nighttime light index, and GDP emerge as primary drivers for Connectance Index (CONNECT), Patch Cohesion Index (COHESION), and PLAND respectively, with regression coefficients ranging [0.43, 0.76], [-0.99, -0.67], and [-0.98, -0.12].
耕地作为农业发展的基础和核心资源,在优化区域农业资源配置和保障粮食安全方面发挥着关键作用。本研究运用形态学空间格局分析(MSPA)和景观格局指数(LPI),对1990年至2023年山东省耕地的侵蚀和破碎化情况进行综合分析。采用双变量空间自相关(BSA)、皮尔逊相关系数和自组织映射(SOM)算法,研究景观格局指数与空间聚类模式之间的关系。最后,运用多尺度地理加权回归(MGWR)探究驱动因素。结果表明:(1)结果显示,1990年至2023年期间,山东中部和东南部沿海地区的核心耕地区域迅速减少。主要核心区域(1级)占耕地总面积的比例从82.44%急剧下降至30.28%,表明农业景观明显退化。(2)景观格局指标评估显示,耕地破碎化程度加剧。相比之下,西部地区保留了更为完整的农业景观,其特点是耕地占比更高、斑块格局更连贯、空间集聚性更强。(3)双变量空间自相关(平均莫兰指数I = 0.6516)和皮尔逊相关性(平均r = 0.9225)均表明,聚集指数(AI)与景观百分比(PLAND)之间存在强正相关。在六种聚类类型中,以大面积占比、高聚集性和强连通性为特征的C、D和F类聚类代表了最适宜农业发展的区域。尽管C类和D类聚类的比例有所下降(分别从26.5%降至3.7%和从36.8%降至25.7%),但在研究期间,农田保护政策促使F类聚类显著增加,从17.6%增至27.9%。(4)关键驱动因素对不同景观指标的影响各不相同。坡度梯度对周长-面积分形维数(PAFRAC)、斑块密度(PD)和AI的解释力最大。同时,归一化植被指数(NDVI)、夜间灯光指数和国内生产总值(GDP)分别成为连通性指数(CONNECT)、斑块凝聚指数(COHESION)和PLAND的主要驱动因素,回归系数范围分别为[0.43, 0.76]、[-0.99, -0.67]和[-0.98, -0.12]。